首页期刊介绍通知公告编 委 会投稿须知电子期刊广告合作联系我们在线留言
 
海洋热浪背景下海气湍流热通量资料的评估——以2019年东北太平洋“Blob 2.0”事件为例
作者:马婧1  宋翔洲1  闫运伟1  王斌2  陈陟3 
单位:1. 河海大学海洋学院, 江苏 南京 210024;
2. 自然资源部国家海洋技术中心, 天津 300112;
3. 国家海洋环境预报中心, 北京 100081
关键词:海洋热浪 湍流热通量异常 浮标观测 通量数据集 
分类号:P731.26
出版年·卷·期(页码):2024·41·第三期(1-11)
摘要:
2019年夏季,东北太平洋地区经历了一次名为“Blob 2.0”的海洋热浪事件,对海洋生态系统造成了严重影响。利用美国国家数据浮标中心的浮标观测资料、全球客观分析通量产品OAFlux,以及大气再分析数据集ERA5、NCEP2和MERRA-2,综合分析了“Blob 2.0”事件期间海气湍流热通量的特征,并研究了其物理因素。浮标观测显示,在“Blob 2.0”事件期间,潜热通量呈现正增长趋势,而感热通量呈现负增长趋势,这一现象可归因于海气比湿度差呈正增长,而风速和海气温差呈负增长。评估结果表明:4种通量数据产品都低估了潜热通量的增长,ERA5的增长率与浮标最为接近。对于感热通量,MERRA-2 和 NCEP2 产品的增长趋势与浮标观测相同,其中MERRA-2的增长率更接近;而OAFlux和ERA5产品的增长趋势与观测相反。
In the summer of 2019, the Northeastern on Pacific region experienced a marine heatwave event called "Blob 2.0", which had a significant impact on the marine ecosystem. This study conducted a comprehensive analysis of the characteristics of air-sea turbulent heat flux during this event using the buoy data from National Data Buoy Center, the global objective flux product OAFlux, and atmospheric reanalysis datasets ERA5, NCEP2 and MERRA-2. The study also investigated the physical factors influencing these fluxes. The buoy observation revealed that during the "Blob 2.0" event, there was a positive increasing trend in latent heat flux, while sensible heat flux exhibited a negative decreasing trend. This phenomenon can be attributed to the positive increase in the air-sea specific humidity difference and the negative decrease in wind speed and air-sea temperature difference. Evaluation results indicated that all four flux data products underestimated the growth of latent heat flux, with ERA5 showing the closest agreement with buoy observation. Regarding sensible heat flux, both MERRA-2 and NCEP2 products exhibited a similar increasing trend as observed by buoys, with MERRA-2 showing a closer growth rate. However, OAFlux and ERA5 products showed an opposite trend compared to the observations.
参考文献:
[1] HOBDAY A J, ALEXANDER L V, PERKINS S E, et al. A hierarchical approach to defining marine heatwaves[J]. Progress in Oceanography, 2016, 141:227-238.
[2] HOBDAY A J, OLIVER E C J, GUPTA A S, et al. Categorizing and naming marine heatwaves[J]. Oceanography, 2018, 31(2):162-173.
[3] GUPTA A S, THOMSEN M, BENTHUYSEN J A, et al. Drivers and impacts of the most extreme marine heatwave events[J]. Scientific Reports, 2020, 10(1):19359.
[4] OLIVER E C J, DONAT M G, BURROWS M T, et al. Longer and more frequent marine heatwaves over the past century[J]. Nature Communications, 2018, 9(1):1324.
[5] OLITA A, SORGENTE R, NATALE S, et al. Effects of the 2003 European heatwave on the Central Mediterranean Sea:surface fluxes and the dynamical response[J]. Ocean Science, 2007, 3(2):273-289.
[6] CHEN K, GAWARKIEWICZ G, KWON Y O, et al. The role of atmospheric forcing versus ocean advection during the extreme warming of the Northeast U.S. continental shelf in 2012[J]. Journal of Geophysical Research:Oceans, 2015, 120(6):4324-4339.
[7] TAN H J, CAI R S. What caused the record-breaking warming in East China Seas during August 2016?[J]. Atmospheric Science Letters, 2018, 19(10):e853.
[8] PERKINS-KIRKPATRICK S E, KING A D, COUGNON E A, et al. The role of natural variability and anthropogenic climate change in the 2017/18 Tasman Sea marine heatwave[J]. Bulletin of the American Meteorological Society, 2019, 100(1):S105-S110.
[9] OLIVER E C J, BENTHUYSEN J A, BINDOFF N L, et al. The unprecedented 2015/16 Tasman Sea marine heatwave[J]. Nature Communications, 2017, 8(1):16101.
[10] GAWARKIEWICZ G, CHEN K, FORSYTH J, et al. Characteristics of an Advective marine heatwave in the middle Atlantic bight in early 2017[J]. Frontiers in Marine Science, 2019, 6:712.
[11] SUGIMOTO S, QIU B, KOJIMA A. Marked coastal warming off Tokai attributable to Kuroshio large meander[J]. Journal of Oceanography, 2020, 76(2):141-154.
[12] DI LORENZO E, MANTUA N. Multi-year persistence of the 2014/15 North Pacific marine heatwave[J]. Nature Climate Change, 2016, 6(11):1042-1047.
[13] HU Z Z, KUMAR A, JHA B, et al. Persistence and predictions of the remarkable warm anomaly in the northeastern Pacific Ocean during 2014-16[J]. Journal of Climate, 2017, 30(2):689-702.
[14] TSENG Y H, DING R Q, HUANG X M. The warm blob in the northeast Pacific-The bridge leading to the 2015/16 El Niño[J]. Environmental Research Letters, 2017, 12(5):054019.
[15] WALSH J E, THOMAN R L, BHATT U S, et al. The high latitude marine heat wave of 2016 and its impacts on Alaska[J]. Bulletin of the American Meteorological Society, 2018, 99(1):S39-S43.
[16] VIGLIONE G. Fevers are plaguing the oceans-and climate change is making them worse[J]. Nature, 2021, 593(7857):26-28.
[17] FRÖLICHER T L, FISCHER E M, GRUBER N. Marine heatwaves under global warming[J]. Nature, 2018, 560(7718):360-364.
[18] 胡石建,李诗翰.海洋热浪研究进展与展望[J].地球科学进展, 2022, 37(1):51-64. HU S J, LI S H. Progress and prospect of marine heatwave study[J]. Advances in Earth Science, 2022, 37(1):51-64.
[19] GENTEMANN C L, FEWINGS M R, GARCÍA-REYES M. Satellite sea surface temperatures along the West Coast of the United States during the 2014-2016 northeast Pacific marine heat wave[J]. Geophysical Research Letters, 2017, 44(1):312-319.
[20] SCHMEISSER L, BOND N A, SIEDLECKI S A, et al. The role of clouds and surface heat fluxes in the maintenance of the 2013-2016 Northeast Pacific marine heatwave[J]. Journal of Geophysical Research:Atmospheres, 2019, 124(20):10772-10783.
[21] SANFORD E, SONES J L, GARCÍA-REYES M, et al. Widespread shifts in the coastal biota of northern California during the 2014-2016 marine heatwaves[J]. Scientific Reports, 2019, 9(1):4216.
[22] AMAYA D J, MILLER A J, XIE S P, et al. Physical drivers of the summer 2019 North Pacific marine heatwave[J]. Nature Communications, 2020, 11(1):1903.
[23] YU L S. Global air-sea fluxes of heat, fresh water, and momentum:energy budget closure and unanswered questions[J]. Annual Review of Marine Science, 2019, 11:227-248.
[24] JOSEY S A. A comparison of ECMWF, NCEP-NCAR, and SOC surface heat fluxes with moored buoy measurements in the subduction region of the Northeast Atlantic[J]. Journal of Climate, 2001, 14(8):1780-1789.
[25] 刘喻道,高郭平,赵进平,等.基于海气耦合浮标分析北欧海夏季海气热通量及其对ERA-Interim/OAFlux的评估[J].上海海洋大学学报, 2018, 27(1):149-160. LIU Y D, GAO G P, ZHAO J P, et al. Analysis of summer air-sea heat flux based on moored buoy observations and comparison to with the ERA-Interim/OAFlux in the Nordic Seas[J]. Journal of Shanghai Ocean University, 2018, 27(1):149-160.
[26] CRONIN M F, GENTEMANN C L, EDSON J, et al. Air-sea fluxes with a focus on heat and momentum[J]. Frontiers in Marine Science, 2019, 6:430.
[27] EDSON J B, JAMPANA V, WELLER R A, et al. On the exchange of momentum over the open ocean[J]. Journal of Physical Oceanography, 2013, 43(8):1589-1610.
[28] FAIRALL C W, BRADLEY E F, HARE J E, et al. Bulk parameterization of air-sea fluxes:updates and verification for the COARE algorithm[J]. Journal of Climate, 2003, 16(4):571-591.
[29] YU L S, WELLER R A. Objectively analyzed air-sea heat fluxes for the global ice-free oceans (1981-2005)[J]. Bulletin of the American Meteorological Society, 2007, 88(4):527-540.
[30] GELARO R, MCCARTY W, SUÁREZ M J, et al. The modern-era retrospective analysis for research and applications, version 2(MERRA-2)[J]. Journal of Climate, 2017, 30(14):5419-5454.
[31] SONG X Z. The importance of relative wind speed in estimating air-sea turbulent heat fluxes in bulk formulas:examples in the Bohai Sea[J]. Journal of Atmospheric and Oceanic Technology, 2020, 37(4):589-603.
[32] HERSBACH H, BELL B, BERRISFORD P, et al. The ERA5 global reanalysis[J]. Quarterly Journal of the Royal Meteorological Society, 2020, 146(730):1999-2049.
[33] ZHANG L, SHI H Q. An evaluation of new satellite-derived latent and sensible heat fluxes with moored buoy data, OAFlux and NCEP2 reanalysis products[J]. Acta Oceanologica Sinica, 2017, 36(9):27-38.
[34] MONIN A S, OBUKHOV A M. Basic laws of turbulent mixing in the atmosphere near the ground[J]. Tr. Akad. Nauk SSSR Geophiz. Inst, 1954, 24(151):163-187.
[35] LIU W T, KATSAROS K B, BUSINGER J A. Bulk parameterization of air-sea exchanges of heat and water vapor including the Molecular Constraints at the interface[J]. Journal of the Atmospheric Sciences, 1979, 36(9):1722-1735.
[36] LARGE W G, POND S. Open ocean momentum flux measurements in moderate to strong winds[J]. Journal of Physical Oceanography, 1981, 11(3):324-336.
[37] SONG X Z, WANG X Y, CAI W B, et al. Observed air-sea turbulent heat flux anomalies during the onset of the South China Sea summer monsoon in 2021[J]. Monthly Weather Review, 2023, 151(9):2443-2464.
服务与反馈:
文章下载】【发表评论】【查看评论】【加入收藏
 
 海洋预报编辑部 地址:北京海淀大慧寺路8号
电话:010-62105776
投稿网址:http://www.hyyb.org.cn
邮箱:bjb@nmefc.cn