基于SCHISM的中国近海潮汐二维数值模拟 |
作者:付慧卿1 2 吴伦宇1 2 季轩梁1 2 李云1 2 张苗茵1 2 |
单位:1. 国家海洋环境预报中心, 北京 100081; 2. 国家海洋环境预报中心 自然资源部海洋灾害预报技术重点实验室, 北京 100081 |
关键词:中国近海 潮汐 数值模拟 底摩擦 |
分类号:P731.23 |
|
出版年·卷·期(页码):2024·41·第五期(1-14) |
摘要:
|
基于非结构半隐式跨尺度海洋模式SCHISM构建了中国及临近海域的二维潮汐模型,针对多源资料开展了模型验证工作并进行系列数值实验。经潮汐调和分析得到M2、S2、K1、O1的调和常数和对应同潮图,并将无潮点位置同前人研究结果进行比较,与沿海114个验潮站和FES2014潮汐模型的调和常数进行验证,并与部分现场实测水位序列进行对比,结果表明该模型能较好地模拟中国海域的潮汐特征。本文还定量评估了自吸-负荷潮对数值模拟的影响,其中M2分潮受其影响最大,其振幅在浙闽一带可达20 mm以上;提升区域分辨率与添加浅水分潮等敏感性实验结果表明,当局地分辨率由3 km提升至100 m后,模拟精度可提高约30%,而添加浅水分潮后,部分区域的模拟精度最大可提高约8%。 |
Based on the Semi-implicit Cross-scale Hydroscience Integrated System Model (SCHISM), a series of numerical experiments are carried out with multi-source data. Using tidal harmonic analysis method, the harmonic constants for four constituents (M2, S2, K1, and O1), and their relative cotidal charts are generated. The location of the no-tide point is compared with previous studies. The results obtained through the comparison against harmonic constants from 114 tide gauge stations and the FES2014 tidal model suggest that the tidal model can effectively simulate tidal characteristics in the China seas. Moreover, the influence of self-attraction loading (SAL) tides on tidal simulation is further quantitatively examined, the findings demonstrate that the SAL effect significantly influences the M2 component tide, resulting in an amplitude impact exceeding 20 mm in both the Zhejiang and Fujian regions. In addition, this study includes sensitive experiments investigating the effects of altering resolution and incorporating shallow water constituents by validating the model using three tide gauge stations near Dongtou District in Wenzhou. It’s found that improving model resolution from 3 km to 100 m can enhance simulation accuracy by approximately 30%, whereas the inclusion of shallow water constituents only results in an improvement of up to about 8% in certain areas. |
参考文献:
|
[1] 张家旭, 左涛, 左明, 等. 基于生计渔业调查的黄河口西南侧潮间带渔业生物多样性及其季节变化[J]. 渔业科学进展, 2023, 44(2):10-19. ZHANG J X, ZUO T, ZUO M, et al. Seasonal biodiversity of fishery resources by set net in the intertidal zone to the southwest of the Yellow River estuary[J]. Progress in Fishery Sciences, 2023, 44(2):10-19. [2] 刘凯. 潮汐原理极其潮汐能的利用[J]. 智库时代, 2018(29):202-209. LIU K. Tidal principles and utilization of tidal energy[J]. Think Tank Era, 2018(29):202-209. [3] 李岸. 不同潮位和浪高条件对30万吨级油船靠泊作业安全的影响[J]. 港口科技, 2019(11):23-28. LI A. Different tidal levels and wave heights impact on the safety of 300, 000-ton oil tanker berthing operations[J]. Port Science & Technology, 2019(11):23-28. [4] 李亮, 郭俊丽, 时连强, 等. 历史时期江苏沿海风暴潮灾害时空分布特征[J]. 古地理学报, 1-14. LI L, GUO J L, SHI L Q, et al. Historical period spatiotemporal distribution characteristics of storm surges in coastal areas of Jiangsu[J]. Journal of Paleogeography, 1-14. [5] 沈育疆. 东中国海潮汐数值计算[J]. 山东海洋学院学报, 1980, 10(3):26-35. SHEN Y J. Numerical computation of tides in the East China Sea [J]. Journal of Shandong College of Oceanology, 1980, 10(3):26-35. [6] 叶安乐, 梅丽明. 渤黄东海潮波数值模拟[J]. 海洋与湖沼, 1995, 26(1):63-70. YE A L, MEI L M. Numerical modelling of tidal waves in the Bohai sea, the Huanghai sea and the East China Sea[J]. Oceanologia et Limnologia Sinica, 1995, 26(1):63-70. [7] 赵保仁, 方国洪, 曹德明. 渤、黄、东海潮汐潮流的数值模拟[J]. 海洋学报, 1994, 16(5):1-10. ZHAO B R, FANG G H, CAO D M. Bohai, Yellow, East China Sea tidal current numerical simulation[J]. Acta Oceanologica Sinica, 1994, 16(5):1-10. [8] FANG G H, WANG Y G, WEI Z X, et al. Empirical cotidal charts of the Bohai, Yellow, and East China Seas from 10 years of TOPEX / Poseidon altimetry[J]. Journal of Geophysical Research:Oceans, 2004, 109(C11):C11006. [9] FANG G H, KWOK Y K, YU K J, et al. Numerical simulation of principal tidal constituents in the South China Sea, Gulf of Tonkin and Gulf of Thailand[J]. Continental Shelf Research, 1999, 19(7):845-869. [10] 杨万康, 尹宝树, 杨德周, 等. 基于FVCOM的南海北部海域潮汐潮流数值模拟[J]. 海洋科学, 2013, 37(9):10-19. YANG W K, YIN B S, YANG D Z, et al. Application of FVCOM in numerical simulation of tide and tidal currents in the northern South China Sea[J]. Marine Sciences, 2013, 37(9):10-19. [11] 蒋志婷. 舟山群岛海域潮汐动力的数值模拟研究[D]. 舟山:浙江海洋大学, 2018. JIANG Z T. Numerical simulation of tidal dynamics in the Zhoushan archipelago waters[D]. Zhoushan:Zhejiang Ocean University, 2018. [12] 陈倩. 浙江近海潮汐潮流的三维数值模拟[D]. 杭州:浙江大学, 2002. CHEN Q. Three-dimensional simulation of tides and tidal currents in the seas adjacent to Zhejiang[D]. Hangzhou:Zhejiang University, 2002. [13] 姜锦东, 方国洪, 滕飞, 等. 内潮耗散与自吸-负荷潮对南海潮波影响的数值研究[J]. 海洋与湖沼, 2018, 49(3):457-470. JIANG J D, FANG G H, TENG F, et al. Dissipation and selfattraction-and loading of internal tides:impact on the tidal waves in the South China Sea[J]. Oceanologia et Limnologia Sinica, 2018, 49(3):457-470. [14] KERR P C, DONAHUE A S, WESTERINK J J, et al. U.S. IOOS coastal and ocean modeling testbed:inter-model evaluation of tides, waves, and hurricane surge in the Gulf of Mexico[J]. Journal of Geophysical Research:Oceans, 2013, 118(10):5129-5172. [15] 涂成东. 全球及东中国海高分辨率潮波数值模拟[D]. 舟山:浙江海洋大学, 2021. TU C D. High-resolution numerical simulation of tidal waves in the global and East China Sea[D]. Zhoushan:Zhejiang Ocean University, 2021. [16] 朱子瑞, 张文静, 朱首贤, 等. 南海SCHISM模式不同垂向坐标研究[J]. 海洋通报, 2022, 41(2):147-155. ZHU Z R, ZHANG W J, ZHU S X, et al. Contrastive study on different vertical coordinate settings of SCHISM model in the Nanhai Sea[J]. Marine Science Bulletin, 2022, 41(2):147-155. [17] 罗志发, 谭超, 黄本胜, 等. 珠江河口风暴潮对径流的敏感性研究:以台风“山竹”为例[J]. 热带气象学报, 2022, 38(4):521-528. LUO Z F, TAN C, HUANG B S, et al. Effect of runoff on storm surge in Pearl River estuary[J]. Journal of Tropical Meteorology, 2022, 38(4):521-528. [18] 尹宝树. 波浪和风暴潮潮汐耦合作用的研究与发展[Z]. 2007. YIN B S. Wave and storm surge tide coupling research and development[Z]. 2007. [19] 尹宝树, 莎日娜, 杨德周, 等. 海浪和潮汐风暴潮耦合过程的数值研究(英文)[J]. 海洋科学集刊, 2006, 47(1):1-15. YIN B S, SHA R N, YANG D Z, et al. Numerical study of wavetide-surge coupling processes[J]. Studia Marina Sinica, 2006, 47(1):1-15. [20] ZHANG Y L, BAPTISTA A M. SELFE:a semi-implicit eulerianlagrangian finite-element model for cross-scale ocean circulation [J]. Ocean Modelling, 2008, 21(3-4):71-96. [21] ZHANG Y J, YE F, STANEV E V, et al. Seamless cross-scale modeling with SCHISM[J]. Ocean Modelling, 2016, 102:64-81. [22] YOO H J, KIM D H, PARK M H, et al. Economic sediment transport control with sediment flushing curves for sea dike gate operation:case study in Saemangeum Basin, Korea[J]. Journal of Coastal Research, 2021, 114(sp1):161-165. [23] CHIU C M, HUANG C J, WU L C, et al. Forecasting of oil-spill trajectories by using SCHISM and X-band radar[J]. Marine Pollution Bulletin, 2018, 137:566-581. [24] NAHON A, IDIER D, BERTIN X, et al. Modelling the contribution of wind waves to Cap Ferret's updrift erosion[J]. Coastal Engineering, 2022, 172:104063. [25] FORTUNATO A B, MEREDITH E P, RODRIGUES M, et al. Near-future changes in storm surges along the Atlantic Iberian coast[J]. Natural Hazards, 2019, 98(3):1003-1020. [26] MAYO T, BUTLER T, DAWSON C, et al. Data assimilation within the Advanced Circulation (ADCIRC) modeling framework for the estimation of Manning's friction coefficient[J]. Ocean Modelling, 2014, 76:43-58. [27] 方国洪, 徐晓庆, 魏泽勋, 等. 渤、黄、东海垂向位移负荷潮和自吸-负荷潮[J]. 中国科学:地球科学, 2013, 43(2):163-170. FANG G H, XU X Q, WEI Z X, et al. Vertical displacement loading tides and self-attraction and loading tides in the Bohai, Yellow, and East China Seas[J]. Science China Earth Sciences, 2013, 56(1):63-70. [28] WAHR J M. Body tides on an elliptical, rotating, elastic and oceanless earth[J]. Geophysical Journal International, 1981, 64(3):677-703. [29] PAWLOWICZ R, BEARDSLEY B, LENTZ S. Classical tidal harmonic analysis including error estimates in MATLAB using T_TIDE[J]. Computers & Geosciences, 2002, 28(8):929-937. [30] 汪一航, 方国洪, 魏泽勋, 等. 基于卫星高度计的全球大洋潮汐模式的准确度评估[J]. 地球科学进展, 2010, 25(4):353-359. WANG Y H, FANG G H, WEI Z X, et al. Accuracy assessment of global ocean tide models base on satellite altimetry[J]. Advances in Earth Science, 2010, 25(4):353-359. [31] 单慧洁. 温州近海建设工程环境影响潮汐潮流数值模拟[D]. 宁波:宁波大学, 2014. SHAN H J. The construction project's environmental impact of numerical simulation of tide and tidal current in Wenzhou offshore [D]. Ningbo:Ningbo University, 2014. |
服务与反馈:
|
【文章下载】【发表评论】【查看评论】【加入收藏】
|
|
|