南太平洋海表面盐度最大值年代际变异机理研究 |
作者:朱婷婷1 2 王庆业2 陈丽丽1 |
单位:1. 山东科技大学, 山东 青岛 266590; 2. 中国科学院海洋环流与波动重点实验室, 山东 青岛 266071 |
关键词:南太平洋 海表面盐度 年代际变化 水平平流 淡水强迫 |
分类号:P731.12 |
|
出版年·卷·期(页码):2024·41·第五期(51-61) |
摘要:
|
已有研究表明南太平洋海表面盐度最大值存在明显的年代际变化,表现为盐度位置的变化,而对于调控该年代际变化的机制尚不清楚。利用1999—2022年的盐度数据,再现了盐度最大值位置的东北—西南向摆动,即2005年和2016年盐度位置偏东北,2011年和2022年偏西南。在此基础上,利用盐度收支分析与1.5层约化重力模式两种方法研究了1999—2022年南太平洋海表面盐度最大值的年代际变化机理,评估了淡水强迫、水平平流、垂直夹卷、水平扩散这4种因素的相对贡献。结果表明:水平平流、淡水强迫的平均贡献最大,前者是驱动南太平洋海表面盐度最大值位置的年代际变化的关键因素,而淡水强迫项主要是引起盐度量值大小的年代际变化;垂直夹卷项与水平扩散项在盐度最大值年代际变化中的贡献可能较小。 |
This article utilizes salinity data from 1999 to 2022 to depict the northeast-southwest oscillation in the position of the maximum salinity, with a shift to the northeast in 2005 and 2016, and a shift to the southwest in 2011 and 2022. Two methods, salinity budget analysis and a 1.5-layer reduced gravity model, are used to investigate the interdecadal variation mechanism of the sea surface salinity maximum in the South Pacific Ocean from 1999 to 2022, and to assess the relative contributions of freshwater forcing, horizontal advection, vertical entrainment, and horizontal diffusion. The results show that the average contribution of horizontal advection and freshwater forcing are dominant, with horizontal advection being the key factor driving the interdecadal variation in the position of the sea surface salinity maximum in the South Pacific Ocean, while the freshwater forcing mainly causes changes in the magnitude of salinity values. The contributions of vertical entrainment and horizontal diffusion to the interdecadal variation in the salinity maximum may be relatively small. |
参考文献:
|
[1] LEVITUS S. Annual cycle of salinity and salt storage in the world ocean[J]. Journal of Physical Oceanography, 1986, 16(2):322-343. [2] DURACK P J, WIJFFELS S E. Fifty-year trends in global ocean salinities and their relationship to broad-scale warming[J]. Journal of Climate, 2010, 23(16):4342-4362. [3] TERRAY L, CORRE L, CRAVATTE S, et al. Near-surface salinity as nature's rain gauge to detect human influence on the tropical water cycle[J]. Journal of Climate, 2012, 25(3):958-977. [4] MELZER B A, SUBRAHMANYAM B. Investigating decadal changes in sea surface salinity in oceanic subtropical gyres[J]. Geophysical Research Letters, 2015, 42(18):7631-7638. [5] HELBER R W, RICHMAN J G, BARRON C N. The influence of temperature and salinity variability on the upper ocean density and mixed layer[J]. Ocean Science Discussions, 2010, 7(4):1469-1495. [6] YU L S, JOSEY S A, BINGHAM F M, et al. Intensification of the global water cycle and evidence from ocean salinity:a synthesis review[J]. Annals of the New York Academy of Sciences, 2020, 1472(1):76-94. [7] YU L S. A global relationship between the ocean water cycle and near‐surface salinity[J]. Journal of Geophysical Research:Oceans, 2011, 116(C10):C10025. [8] SHI H Y, DU L, NI X B. Salinity variability modes in the Pacific Ocean from the perspectives of the Interdecadal Pacific Oscillation and global warming[J]. Journal of Geophysical Research:Oceans, 2022, 127(7):e2021JC018092. [9] GORDON A L, GIULIVI C F, BUSECKE J, et al. Differences among subtropical surface salinity patterns[J]. Oceanography, 2015, 28(1):32-39. [10] BINGHAM F M, BUSECKE J, GORDON A L, et al. The North Atlantic subtropical surface salinity maximum as observed by Aquarius[J]. Journal of Geophysical Research:Oceans, 2014, 119(11):7741-7755. [11] CHEN J, LIU H L, BAI C Z, et al. Identifying climate modes contributing to sea surface salinity decadal variation in the North Pacific Ocean[J]. Journal of Geophysical Research:Oceans, 2020, 125(10):e2019JC016011. [12] HASSON A, DELCROIX T, BOUTIN J. Formation and variability of the South Pacific Sea Surface Salinity maximum in recent decades[J]. Journal of Geophysical Research:Oceans, 2013, 118(10):5109-5116. [13] DELCROIX T, ALORY G, CRAVATTE S, et al. A gridded sea surface salinity data set for the tropical Pacific with sample applications (1950—2008) [J]. Deep Sea Research Part I:Oceanographic Research Papers, 2011, 58(1):38-48. [14] BINGHAM F M, BUSECKE J J M, GORDON A L. Variability of the South Pacific subtropical surface salinity maximum[J]. Journal of Geophysical Research:Oceans, 2019, 124(8):6050-6066. [15] 王心茹. 太平洋盐度的时空变化及气候效应[D]. 青岛:青岛科技大学, 2022. WANG X R. Temporal and spatial variation of salinity in the pacific ocean and climatic effects[D]. Qingdao:Qingdao University of Science & Technology, 2022. [16] GOOD S A, MARTIN M J, RAYNER N A. EN4:quality controlled ocean temperature and salinity profiles and monthly objective analyses with uncertainty estimates[J]. Journal of Geophysical Research:Oceans, 2013, 118(12):6704-6716. [17] LEVITUS S, ANTONOV J I, BOYER T P, et al. Global ocean heat content 1955-2008 in light of recently revealed instrumentation problems[J]. Geophysical Research Letters, 2009, 36(7):L07608. [18] YU L, JIN X, WELLER R A. Multidecade global flux datasets from the objectively analyzed air-sea fluxes (OAFlux) project:latent and sensible heat fluxes, ocean evaporation, and related surface meteorological variables[R]. Barnsborough County:Woods Hole Oceanographic Institution, 2008:64. [19] ADLER R F, HUFFMAN G J, CHANG A, et al. The Version-2 Global Precipitation Climatology Project (GPCP) Monthly Precipitation Analysis (1979-present) [J]. Journal of Hydrometeorology, 2003, 4(6):1147-1167. [20] DUCET N, LE TRAON P Y, REVERDIN G. Global highresolution mapping of ocean circulation from TOPEX / Poseidon and ERS-1 and -2[J]. Journal of Geophysical Research:Oceans, 2000, 105(C8):19477-19498. [21] HERSBACH H, BELL B, BERRISFORD P, et al. The ERA5 global reanalysis[J]. Quarterly Journal of the Royal Meteorological Society, 2020, 146(730):1999-2049. [22] MANTUA N J, HARE S R, ZHANG Y, et al. A Pacific interdecadal climate oscillation with impacts on salmon production[J]. Bulletin of the American Meteorological Society, 1997, 78(6):1069-1080. [23] JOHNSON G C, SCHMIDTKO S, LYMAN J M. Relative contributions of temperature and salinity to seasonal mixed layer density changes and horizontal density gradients[J]. Journal of Geophysical Research:Oceans, 2012, 117(C4):C04015. [24] DONG S F, GARZOLI S L, BARINGER M. An assessment of the seasonal mixed layer salinity budget in the southern Ocean[J]. Journal of Geophysical Research:Oceans, 2009, 114(C12):C12001. [25] 张玉红, 徐海明, 杜岩, 等. 阿拉伯海东南海域盐度收支的季节变化[J]. 热带海洋学报, 2009, 28(5):66-74. ZHANG Y H, XU H M, DU Y, et al. Seasonal variability of salinity budget in the southeastern Arabian Sea[J]. Journal of Tropical Oceanography, 2009, 28(5):66-74. [26] KIM S B, FUKUMORI I, LEE T. The closure of the ocean mixed layer temperature budget using level-coordinate model fields[J]. Journal of Atmospheric and Oceanic Technology, 2006, 23(6):840-853. [27] FENG M, HACKER P, LUKAS R. Upper ocean heat and salt balances in response to a westerly wind burst in the western equatorial Pacific during TOGA COARE[J]. Journal of Geophysical Research:Oceans, 1998, 103(C5):10289-10311. [28] HUANG R X. Ocean circulation:wind-driven and thermohaline processes[M]. Cambridge, New York:Cambridge University Press, 2009:261-267. [29] LUO Y Y, ROTHSTEIN L M, ZHANG R H, et al. On the connection between South Pacific subtropical spiciness anomalies and decadal equatorial variability in an ocean general circulation model[J]. Journal of Geophysical Research:Oceans, 2005, 110(C10):C10002. [30] LACASCE J H, ISACHSEN P E. On Sverdrup discontinuities and vortices in the Southwest Indian Ocean[J]. Journal of Physical Oceanography, 2007, 37(12):2940-2950. [31] HUTCHINSON K, BEAL L M, PENVEN P, et al. Seasonal phasing of Agulhas Current transport tied to a baroclinic adjustment of near-field winds[J]. Journal of Geophysical Research:Oceans, 2018, 123(10):7067-7083. |
服务与反馈:
|
【文章下载】【发表评论】【查看评论】【加入收藏】
|
|
|