首页期刊介绍通知公告编 委 会投稿须知电子期刊广告合作联系我们在线留言
 
基于深度学习的大风订正预报研究
作者:杨凡1  刘志丰2  任兆鹏1  崔天伦3  于洋3 
单位:1. 青岛市气象服务中心, 山东 青岛 266003;
2. 青岛市黄岛区气象局, 山东 青岛 266400;
3. 青岛天洋气象科技有限公司, 山东 青岛 266400
关键词:残差神经网络 长短期记忆网络 风速 预报 订正 
分类号:P457.5
出版年·卷·期(页码):2024·41·第六期(23-31)
摘要:
基于数值预报模式产品的风速预报集成学习误差订正方法,通过长短期记忆网络(LSTM)和残差神经网络(ResNet)构建新的风速预测混合模型 ResNet-LSTM。采用 2019—2020年欧洲中期天气预报中心39种数值天气预报模式产品训练深度学习模型,对格点预报产品插值到站点后的预报结果进行订正。结果表明:与ECMWF的原始预报相比,ResNet-LSTM模型在预测6级以上阵风时的 TS评分整体可以提高 50% 以上,预报精度提升。寒潮大风和台风大风的个例分析也表明,ResNet-LSTM可以有效解决大风漏报问题,对站点风速的预报订正效果显著。
A novel wind speed prediction model, the ResNet-LSTM model, is proposed combining the Long Short-Term Memory (LSTM) model and Residual Network (ResNet) model. By using 39 kinds of numerical weather forecasting products from the European Center for Medium Range Weather Forecasting (ECMWF), a deep learning model is trained to correct wind speed forecasts. The results show that compared with the ECMWF results, the TS score of the ResNet-LSTM model for gusts above level 6 has been increased by over 50%. Further analysis shows that the ResNet-LSTM model can effectively solve the fail report problem and improve wind speed forecasting corrections.
参考文献:
[1] 刘志杰, 刘彬贤, 王锐, 等.基于传统和深度学习技术的黄渤海域大风预报方法研究[J].海洋预报, 2022, 39(6):34-43. LIU Z J, LIU X B, WANG R, et al. Research on the gale prediction methods in the Yellow Sea and Bohai Sea based on traditional and deep learning technologies[J]. Marine forecasts, 2022,39(6):34-43.
[2] 陈静, 陈德辉, 颜宏.集合数值预报发展与研究进展[J].应用气象学报, 2002(4):497-507. CHEN J, CHEN D H, YAN H. A brief review on the development of ensemble prediction system[J]. Journal of Applied Meteorolo -gical Science, 2002, 13(4): 497-507.
[3] 韩念霏, 杨璐, 陈明轩, 等.京津冀站点风温湿要素的机器学习订正方法[J].应用气象学报, 2022, 33(4):489-500. HAN N F, YANG L, CHEN M X, et al. Machine learning correction of wind, temperature and humidity elements in BeijingTianjin-Hebei Region. Journal of Applied Meteorological Science, 2022, 33(4): 489-500.
[4] 孙健, 曹卓, 李恒等.人工智能技术在数值天气预报中的应用[J]. 应用气象学报, 2021, 32(1):1-11. SUN J, CAO Z, LI H, et al. Application of artificial intelligence technology to numerical weather prediction. Journal of Applied Meteorological Science, 2021, 32(1): 1-11.
[5] 孙全德, 焦瑞莉, 夏江江, 等.基于机器学习的数值天气预报风速订正研究[J].气象, 2019, 45(3):426-436. SUN Q D, JIAO R L, XIA J J, et al. Adjusting Wind Speed Prediction of Numerical Weather Forecast Model Based on Machine Learning Methods[J].Meteorological Monthly, 2019, 45(3):426-436.
[6] 孔令彬, 赵艳茹, 王聚杰, 等.基于支持向量机风速订正方法的研究[J].西南大学学报(自然科学版), 2014, 36(5):194-200. KONG L B, ZHAO Y R, WANG J J, et al. Modification of Wind Speed Based on SVM[J]. Journal of Southwest University (Natural Science Edition), 2014, 36(5):194-200.
[7] 张颖超, 肖寅, 邓华.基于ELM的风电场短期风速订正技术研究[J].气象, 2016, 42(4):466-471. ZHANG Y C, XIAO Y, DENG H. Modification Technology Research of Short Term Wind Speed in Wind Farm Based on ELM Method[J]. Journal of Applied Meteorological Science, 2016, 42(4):466-471.
[8] 邓华, 张颖超, 顾荣, 等. 基于PCA-RBF的风电场短期风速订正方法研究[J].气象科技, 2018, 46(01):10-15. DENG H, ZHANG Y C, GU R, et al. Correction Method of Short Term Wind Speed in Wind Farm Research Based on PCA and RBF Neural Network[J]. Meteorological Science and Technology, 2018, 46(01):10-15.
[9] 刘志丰, 丁锋. 基于人工神经网络的沿海风速多步预测研究[J]. 气象科技, 2022, 50(6):851-858. LIU Z F, DING F. Research on Application of Artificial Neural Network for Sea Surface Wind Speed Forecasting[J]. Meteorological Science and Technology, 2022,50(6):851-858.
[10] 王国松, 王喜冬, 侯敏, 等.基于观测和再分析数据的LSTM深度神经网络沿海风速预报应用研究[J].海洋学报, 2020, 42(1):67-77.WANG G S, WANG X D, HOU M, et al. Research on application of LSTM deep neural network on historical observation data and reanalysis data for sea surface wind speed forecasting[J]. Haiyang Xuebao, 2020, 42(1): 67-77.
[11] HUANG C J, KUO P H. A Deep CNN-LSTM Model for Particulate Matter (PM2.5) Forecasting in Smart Cities[J]. Sensors, 2018, 18(7):2220.
[12] 王琛, 王颖, 郑涛, 等.基于ResNet-LSTM网络和注意力机制的综合能源系统多元负荷预测[J]. 电工技术学报, 2022, 37(7): 1789-1799. WANG C, WANG Y, DENG T, et al. Multi-Energy Load Forecasting in Integrated Energy System Based on ResNet-LSTM Network and Attention Mechanism[J]. Transactions of China Electrotechnical Society,2022,37(7):1789-1799.
[13] He K M, Zhang X Y, Ren S Q, et al. Deep residual learning for image recognition. Proceedings of 2016 IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas, NV, USA. 2015. 770-778.
[14] 陈昱文, 黄小猛, 李熠, 等. 基于ECMWF产品的站点气温预报集成学习误差订正[J].应用气象学报, 2020, 31(4):494-503. CHEN Y W, HUANG X M, LI Y, et al. Ensemble learning for bias correction of station temperature forecast based on ECMWF products[J]. Journal of Applied Meteorological Science, 2020, 31(4): 494-503.
服务与反馈:
文章下载】【发表评论】【查看评论】【加入收藏
 
 海洋预报编辑部 地址:北京海淀大慧寺路8号 电话:010-62105776
投稿网址:http://www.hyyb.org.cn
邮箱:bjb@nmefc.cn
本系统由北京博渊星辰网络科技有限公司设计开发 技术支持电话:010-63361626