摘要:
|
通过分析南海全球定位系统探空数据,揭示南海悬空波导的形成规律及其与海洋大气边界层高度的显著相关性。结果表明:南海悬空波导的发生概率约为 60%,波导平均陷获层高度为786 m,平均海洋大气边界层顶高度为 894 m,两者相关系数为 0.64,存在较强的相关性;悬空波导强度和厚度与海洋大气边界层高度的关系不明显。98%的悬空波导由湿度随高度锐减引起,其中约50%伴随着逆温现象。基于这些发现,建立了一个基于近海面温度和陷获层底温差估算悬空波导顶高的经验模型,在南海的应用表现优于美国卫星海上悬空波导高度估算技术。 |
Analysis on the formation mechanism of elevated ducts and their significant correlation with the height of the marine atmospheric boundary layer (MABL) are carried out based on the Global Position System (GPS) sounding data from the South China Sea (SCS). The results show that the occurrence probability of elevated ducts in the South China Sea is approximately 60%, with an average trapping layer height of 786 m and MABL height of 894 m. The correlation coefficient between them is 0.64, demonstrating a strong correlation. The strength and thickness of elevated ducts exhibit no significant relationship with the MABL height. Approximately 98% of elevated ducts are caused by sharp decreases in humidity with altitude, and about 50% of them are accompanied by temperature inversions. Based on these findings, an empirical model is developed to estimate the top height of elevated ducts using the temperature difference between near-surface and trapping layer bottom temperatures. The model demonstrates superior performance in the South China Sea compared to the Satellite Marine-layer/ Elevated Duct Height technique proposed by the United States Navy. |
参考文献:
|
[1] BEAN B R, DUTTON E J. Radio meteorology[M]. New York: National Bureau of Economic Research, 1968: 7-8. [2] 潘中伟, 刘成国, 郭丽. 东南沿海波导结构的预报方法[J]. 电波科学学报, 1996, 11(3): 58-64. PAN Z W, LIU C G, GUO L. The prediction of ducts in south-east coast of China[J]. Chinese Journal of Radio Science, 1996, 11(3): 58-64. [3] 白璐, 张沛, 吴振森, 等. 海上对流层大气波导顶部电磁盲区研究[J]. 电波科学学报, 2016, 31(2): 278-283. BAI L, ZHANG P, WU Z S, et al. Research of electromagnetic shadow zone in maritime tropospheric duct[J]. Chinese Journal of Radio Science, 2016, 31(2): 278-283. [4] 焦林, 张永刚. 大气波导条件下雷达电磁盲区的预报研究[J]. 西安电子科技大学学报, 2004, 34(6): 989-994. JIAO L, ZHANG Y G. Prediction of the electromagnetic shadow zone under the atmospheric duct[J]. Journal of Xidian University, 2004, 34(6): 989-994. [5] 张玉生, 郭相明, 赵强, 等. 大气波导的研究现状与思考[J]. 电波科学学报, 2020, 35(6): 813-831. ZHANG Y S, GUO X M, ZHAO Q, et al. Research status and thinking of atmospheric duct[J]. Chinese Journal of Radio Science, 2020, 35(6): 813-831. [6] 成印河, 赵振维, 张玉生. 季风期间南海低空大气波导统计分析[J]. 电波科学学报, 2012, 27(2): 268-274. CHENG Y H, ZHAO Z W, ZHANG Y S. Statistical analysis of the lower atmospheric ducts during monsoon period over the South China Sea[J]. Chinese Journal of Radio Science, 2012, 27(2): 268-274. [7] 王海斌, 张利军, 王红光. 南海海区低空大气波导气候学分析[J]. 电波科学学报, 2019, 34(5): 633-642. WANG H B, ZHANG L J, WANG H G. The climatological analysis of the lower atmospheric ducts in South China Sea[J]. Chinese Journal of Radio Science, 2019, 34(5): 633-642. [8] STULL R B. 边界层气象学导论[M]. 徐静琦, 杨殿荣, 译. 青岛: 青岛海洋大学出版社, 1991. STULL R B. An introduction to boundory layer meteorology[M]. XU J Q, YANG D R, trans. Qingdao: Qingdao Ocean University Press, 1991. [9] 张宏昇, 张小曳, 李倩惠, 等. 大气边界层高度确定及应用研究进展[J]. 气象学报, 2020, 78(3): 522-536. ZHANG H S, ZHANG X Y, LI Q H, et al. Research progress on estimation of atmospheric boundary layer height[J]. Acta Meteorologica Sinica, 2020, 78(3): 522-536. [10] 戴福山. 大气波导及其军事应用[M]. 北京: 解放军出版社, 2002. DAI F S. Atmoshperic duct and its military applications[M]. Beijing: PLA Press, 2002. [11] ROSENTHAL J S, HELVEY R A, LYONS S W, et al. Weather satellite and computer modeling approaches to assessing propagation over marine environments[C]//AGARD Conference Proceedings. 1989. [12] ROSENTHAL J S, HELVEY R A. Refractive assessments from satellite observations[C]//AGARD Conference Proceedings. 1992. [13] RICHTER J H. Structure, variability, and sensing of the coastal environment[C]//AGARD Conference Proceedings. 1995: 1.1-1.3. [14] LYONS S W. Satellite derived refractive duct height estimates[R]. California: Pacific Missile Test Center, 1985. [15] LYONS S W. SPADS automated duct height statistics[R]. California: Pacific Missile Test Center, 1985. [16] HELVEY R A, ROSENTHAL J S. Guidance for an expert system approach to elevated duct assessment over the northeastern Pacific Ocean[C]//Proceedings of IGARSS '94-1994 IEEE International Geoscience and Remote Sensing Symposium. Pasadena: IEEE, 1994: 405-409. [17] JORDAN M S, DURKEE P A. Verification and validation of the Satellite Marine-Layer/Elevated Duct Height (SMDH) Technique [R]. Monterey: Naval Postgraduate School, Monterey, California, 2000. [18] 郝晓静, 李清亮, 郭立新, 等. 基于气象卫星数据的我国沿海悬空波导反演方法初步研究[J]. 电子学报, 2019, 47(3): 600-605. HAO X J, LI Q L, GUO L X, et al. An preliminary research on inversion method of elevated duct from meteorological satellite observation over Chinese regional seas[J]. Acta Electronica Sinica, 2019, 47(3): 600-605. [19] LI X D, SHENG L F, WANG W C. Elevated ducts and low clouds over the central western Pacific Ocean in winter based on GPS soundings and satellite observation[J]. Journal of Ocean University of China, 2021, 20(2): 244-256. [20] CHENG Y, ZHA M L, YOU Z W, et al. Duct climatology over the South China Sea based on European Center for Medium Range Weather Forecast reanalysis data[J]. Journal of Atmospheric and Solar-Terrestrial Physics, 2021, 222: 105720. [21] 成印河, 钟权加, 周生启.南海局地海域一次低空大气波导过程分析[J].广东海洋大学学报, 2012, 32(6):81-86. Cheng Y H, Zhong Q J, Zhou S Q. A process of the lower atmospheric ducts over the local area of South China Sea [J]. Journal of Guangdong Ocean University, 2012, 32(6):81-86. [22] 董议文, 张蕴斐, 张戈, 等. 不同边界层高度诊断方法对海洋大气边界层高度诊断的适用性研究[J]. 海洋预报, 2021, 38(6): 64-72. DONG Y W, ZHANG Y F, ZHANG G, et al. Applicability of different boundary layer height diagnosis methods to the diagnosis of marine atmospheric boundary layer height[J]. Marine Forecasts, 2021, 38(6): 64-72. [23] 宫庆龙, 刁一娜. 冷空气过程对黄海东海区域海洋大气边界层结构影响的个例分析[J]. 海洋气象学报, 2018, 38(1): 51-61. GONG Q L, DIAO Y N. Case analysis of impact of cold air process on marine atmospheric boundary layer structure in Yellow Sea and East China Sea[J]. Journal of Marine Meteorology, 2018, 38(1): 51-61. [24] BRIDE III M B. Estimation of stratocumulus-topped boundary layer depth using sea surface and remotely sensed cloud-top temperatures[D]. Monterey, California. Naval Postgraduate School, 2000. [25] GARAY M J, DE SZOEKE P S, MORONEY C M. Comparison of marine stratocumulus cloud top heights in the southeastern Pacific retrieved from satellites with coincident ship-based observations[J]. Journal of Geophysical Research: Atmospheres, 2008, 113(D18): D18204. [26] ROSENTHAL J S. Inferring refractivity conditions from satellite imagery[R]. California: Pacific Missile Test Center, 1985. |
服务与反馈:
|
【文章下载】【发表评论】【查看评论】【加入收藏】
|
|
|