江门海域增水特征分析 |
作者:秦钰1 邢会斌1 2 张娟1 |
单位:1. 自然资源部南海预报减灾中心, 广东 广州 510310; 2. 自然资源部海洋环境探测技术与应用重点实验室, 广东 广州 510310 |
关键词:江门 增水 纬向风 副热带高压 |
分类号:P731.22 |
|
出版年·卷·期(页码):2025·42·第二期(18-29) |
摘要:
|
基于2020—2021年江门市下川岛、上川岛等5个海洋观测站点的海洋和气象观测数据,对江门海域增水的季节特征进行分析,并进一步探究江门海域异常增水在台风期和非台风期的驱动来源。结果表明:江门海域各站点增水变化一致,且有显著的季节差异,即冬春季增水振幅变化大而夏秋季(非台风影响期间)相对稳定。增水变化特征主要与纬向风有关,东风增强(减弱)时水位升高(降低),西风期间则呈现出相反的特征。经向风和气压在某些典型过程中对增水也有一定的贡献。台风和副热带高压是引起江门海域纬向风和气压变化的驱动因子,非台风期主要受副热带高压南支气流控制,台风期主要受两者引起的纬向风和气压变化的共同影响。 |
Based on high resolution hydrometeorology observations (2020—2021) at 5 marine observation stations including Xiachuan and Shangchuan in the Jiangmen Sea area, the seasonal variation feature of residual water levels and its driving mechanism are explored and categorized by typhoon-affecting and non-typhoonaffecting periods. Results show that: Jiangmen residual water level variations exhibit consistent changes and significant seasonal differences at each station, in which the amplitude of residual water level variations is large in winter-spring, and small in summer-autumn (non-typhoon-affecting period). Zonal winds variability dominates residual water level variations, in which the residual water level rises (declines) when the easterlies enhances (weakens), and vice era during the westerlies. Meridional winds and pressure changes also contribute to residual water level variations during some representative processes. Typhoon and subtropical high are the driving factors regulating zonal winds and pressure changes in the Jiangmen coast. The residual water levels are controlled by the easterlies south of subtropical high during non-typhoon-affecting period, and by zonal winds and pressure changes during typhoon-affecting period. |
参考文献:
|
[1] SOLDANI M, FAGGIONI O. Observing meteorological tides:fifteen years of statistics in the port of La Spezia (Italy)[J]. Applied Sciences, 2022, 12(23):12202. [2] 罗志发, 黄本胜, 谭超, 等. 珠江河口波浪-风暴潮耦合数值模拟[J]. 广东水利水电, 2021(7):1-6. LUO Z F, HUANG B S, TAN C, et al. Coupled numerical simulation on wave and storm surge around Peral River Estuary[J]. Guangdong Water Resources and Hydropower, 2021(7):1-6. [3] 罗志发, 黄本胜, 谭超, 等. 粤港澳大湾区风暴潮数值模型的建立与应用[J]. 广东水利水电, 2020(11):58-63. LUO Z F, HUANG B S, TAN C, et al. Development and application of the storm surges numerical model around Guangdong-Hong Kong-Macao Greater Bay Area[J]. Guangdong Water Resources and Hydropower, 2020(11):58-63. [4] WEBB B, ARNELL N W, ONOF C, et al. Hydrology:Science and Practice for the 21st Century[C]//Proceedings of the British Hydrological Society International Conference. British Hydrological Society, 2004. [5] 冯士筰. 风暴潮导论[M]. 北京:科学出版社, 1982. FENG S Z. An introdution to storm surge[M]. Beijing:Science Press, 1982. [6] 刘士诚, 陈永平, 谭亚, 等. 珠江河网1822号台风"山竹"期间风暴增水模拟及特性分析[J]. 海洋预报, 2021, 38(2):12-20. LIU S C, CHEN Y P, TAN Y, et al. Storm surge simulation and characteristic analysis during typhoon"Mangkhut"2018 in the Pearl River Estuary[J]. Marine Forecasts, 2021, 38(2):12-20. [7] 韩晶. 台风山竹和天鸽对珠海沿海风暴潮增水影响[J]. 吉林水利, 2019(8):47-49. HAN J. Effect of typhoon "Hato" and "Mangkhut" on rainfall of storm surge in Zhuhai coastal area-taking Sanzao Hydrological Station as an Example[J]. Jilin Water Resources, 2019(8):47-49. [8] LI A L, GUAN S D, MO D X, et al. Modeling wave effects on storm surge from different typhoon intensities and sizes in the South China Sea[J]. Estuarine, Coastal and Shelf Science, 2020, 235:106551. [9] 英晓明, 赵明利. 广东省风暴潮海洋灾害特征及风险防控对策研究[J]. 海洋开发与管理, 2020, 37(6):30-33. YING X M, ZHAO M L. The characteristics of storm surge marine disaster and counter measures in Guangdong Province[J]. Ocean Development and Management, 2020, 37(6):30-33. [10] 叶荣辉, 戈军, 张文明, 等. 影响粤港澳大湾区的热带气旋统计分析[J]. 水利水电技术, 2020, 51(S1):37-43. YE R H, GE J, ZHANG W M, et al. Statistical analysis on impact from tropical cyclone on Guangdong-Hong Kong-Macao Greater Bay Area[J]. Water Resources and Hydropower Engineering, 2020, 51(S1):37-43. [11] 张海燕. 南海区台风风暴潮时空分布特征[J]. 海洋预报, 2019, 36(6):1-8. ZHANG H Y. Spatio-temporal distribution of typhoon storm surge along the South China Sea coast[J]. Marine Forecasts, 2019, 36(6):1-8. [12] GAO Y, WANG H, LIU G M, et al. Risk assessment of tropical storm surges for coastal regions of China[J]. Journal of Geophysical Research:Atmospheres, 2014, 119(9):5364-5374. [13] 中华人民共和国自然资源部. 2021年中国海洋灾害公报[EB/OL]. (2022-04-08)[2024-08-07]. http://gi.mnr.gov.cn/202205/t20220507_2735508.html. Ministry of Natural Resources of the People's Republic of China. China marine disaster bulletin in 2021[EB/OL]. (2022-04-08)[2024-08-07]. http://gi.mnr.gov.cn/202205/t20220507_2735508.html. [14] 广东省自然资源厅. 2020年广东省海洋灾害公报[EB/OL]. (2021-06-10)[2024-08-07]. http://nr.gd.gov.cn/zwgknew/sjfb/sjs/content/post_3316132.html. Department of Natural Resources of Guangdong Province. Guangdong marine disaster bulletin in 2020[EB/OL]. (2021-06- 10)[2024-08-07]. http://nr.gd.gov.cn/zwgknew/sjfb/sjs/content/post_3316132.html. [15] 王燕妮, 吕晓凤, 郝嘉凌, 等. 珠江口沿岸极值增水的空间分布[J]. 海洋预报, 2017, 34(5):74-82. WANG Y N, LYU X F, HAO J L, et al. Spatial distribution of extreme water enhancement along the Pearl River Estuary[J]. Marine Forecasts, 2017, 34(5):74-82. [16] 魏晓宇, 刘雪峰. 闸坡站风暴潮增水与热带气旋登陆点及路径的关系[J]. 台湾海峡, 2010, 29(1):122-127. WEI X Y, LIU X F. Relation between storm surge and elements of landing location and path of tropical cyclone at Zhapo station[J]. Journal of Oceanography in Taiwan Strait, 2010, 29(1):122-127. [17] 张敏, 陈钰祥, 赵雪, 等. 台风移动方向和速度对湛江市沿海风暴潮影响的数值分析[J]. 海洋预报, 2015, 32(5):45-52. ZHANG M, CHEN Y X, ZHAO X, et al. Numerical analysis of the impacts of the moving direction and speed of typhoon on Zhanjiang coastal storm surge[J]. Marine Forecasts, 2015, 32(5):45-52. [18] 杨玄阁, 朱良生. 琼州海峡台风风暴潮增水过程的数值分析[J]. 人民珠江, 2017, 38(1):43-47. YANG X G, ZHU L S. Numerical simulation and analysis of storm surge in the Qiongzhou Strait[J]. Pearl River, 2017, 38(1):43-47. [19] 高娜, 赵明利, 马毅, 等. 台风对珠江口风暴增水的影响分析[J]. 热带海洋学报, 2023, 42(1):32-42. GAO N, ZHAO M L, MA Y, et al. Effect of typhoon on storm surge in the Pearl River Estuary[J]. Journal of Tropical Oceanography, 2023, 42(1):32-42. [20] 罗志发, 黄本胜, 邱静, 等. 粤港澳大湾区风暴潮时空分布特征及影响因素[J]. 水资源保护, 2022, 38(3):72-79. LUO Z F, HUANG B S, QIU J, et al. Spatio-temporal distribution characteristics and influencing mechanisms of storm surge in Guangdong, Hong Kong and Macao Greater Bay Area[J]. Water Resources Protection, 2022, 38(3):72-79. [21] 张敏, 罗军, 胡金磊, 等. 雷州市沿海风暴潮淹没危险性评估[J]. 热带海洋学报, 2019, 38(2):1-12. ZHANG M, LUO J, HU J L, et al. Inundation risk assessment of storm surge along Lei Zhou coastal areas[J]. Journal of Tropical Oceanography, 2019, 38(2):1-12. [22] PARK Y H, SUH K D. Variations of storm surge caused by shallow water depths and extreme tidal ranges[J]. Ocean Engineering, 2012, 55:44-51. [23] 王慧, 刘克修, 范文静, 等. 中国沿海增减水的变化特征及与海平面变化的关系[J]. 海洋学报, 2017, 39(6):10-20. WANG H, LIU K X, FAN W J, et al. Characteristics of residual water level variation along China coast and its relation to sea level change[J]. Acta Oceanologica Sinica, 2017, 39(6):10-20. [24] 王晶, 卢美, 丁骏. 浙江沿海台风风暴潮时空分布特征分析[J]. 海洋预报, 2010, 27(3):16-22. WANG J, LU M, DING J. Analysis of the spatial and temporal distribution of characteristics of typhoon storm surge in Zhejiang coastal waters[J]. Marine Forecasts, 2010, 27(3):16-22. [25] 陈升, 甘敏, 孙丽, 等. 上海沿海风暴潮历史特征分析[J]. 海洋学研究, 2021, 39(4):101-108. CHEN S, GAN M, SUN L, et al. Historical characteristics of the storm surges along Shanghai coast[J]. Journal of Marine Sciences, 2021, 39(4):101-108. [26] 李希彬, 张秋丰, 牛福新, 等. 天津沿海一次非典型台风风暴潮分析[J]. 海洋开发与管理, 2014, 31(12):36-39. LI X B, ZHANG Q F, NIU F X, et al. Analysis of an atypical storm surge along the coast of Tianjin[J]. Ocean Development and Management, 2014, 31(12):36-39. |
服务与反馈:
|
【文章下载】【发表评论】【查看评论】【加入收藏】
|
|
|