环渤海地区一次特强浓雾的观测分析与数值模拟研究 |
作者:田梦1 2 3 刘姝4 孟丽红1 3 靳振华5 郭阳6 孙雪倩7 |
单位:1. 天津市海洋气象重点实验室, 天津 300074; 2. 中国气象科学研究院灾害天气国家重点实验室, 北京 100081; 3. 天津市气象科学研究所, 天津 300074; 4. 中国气象局雄安大气边界层重点开放实验室, 河北 雄安新区 071700; 5. 天津市滨海新区气象局, 天津 300350;
|
关键词:环渤海地区 大雾 天气形势 大气边界层结构 海表面温度 |
分类号:P732.2 |
|
出版年·卷·期(页码):2025·42·第四期(60-73) |
摘要:
|
利用大雾多源融合产品数据、欧洲中期天气预报中心ERA5再分析数据集、地面气象观测数据、探空等数据以及天气研究与预报模式(WRF)的数值和试验结果,对2024年1月11—14日发生在环渤海的特强浓雾事件的时空分布、演变特征、环流背景和大气边界层结构进行分析,揭示此次辐射-平流雾的形成机制,突出了渤海的水汽供应和海温下垫面在雾生消过程中的重要作用。结果表明:大雾产生于较稳定的大气环流背景下,低层弱辐合和夜间辐射降温是促进大雾形成的动力学和热力学条件。来自渤海的偏东风低空急流提供了团雾形成和带状雾持续的水汽条件,强逆温层和“上干下湿”的大气边界层结构是海雾持续时间较长的主因。海温敏感性试验进一步表明,较高的海温可能会降低海雾的浓度和持续时间,反之,低海温有助于海雾维持。此外,海温变化亦会通过改变海面蒸发和水汽平流过程间接影响沿岸陆地雾的生消演变。 |
Using data from the multi-source fog fusion product, the European Centre for Medium-Range Weather Forecasts(ECMWF) 5th Generation ERA5 reanalysis data, ground meteorological observations, radiosonde data, and the Weather Research and Forecasting(WRF) model, this study analyzes the spatial-temporal distribution, evolution characteristics, circulation background, and atmospheric boundary layer structure of the extreme dense fog event over the Bohai Sea from January 11 to 14, 2024. The results reveal the formation and dissipation mechanism of this radiation-advection fog, emphasizing the crucial role of water vapor supply from the Bohai Sea and the sea surface temperature(SST) in the fog’s formation and maintenance. The fog developed under a relatively stable atmospheric circulation, with weak low-level convergence and nocturnal radiative cooling providing the dynamic and thermodynamic conditions conducive to fog formation. Low-level jet originating from the Bohai Sea supplied water vapor necessary for the formation of fog patches and sustained the banded fog. The strong inversion layer and the "upper dry and lower moist" boundary layer structure were identified as the main factor contributing to the prolonged duration of the fog. Additionally, sensitivity experiments suggest that higher SST tended to reduce fog density and shorten its duration, while lower SST favored the persistence of sea fog. Furthermore, SST also affected the formation and dissipation of coastal land fog through processes of sea surface evaporation and water vapor advection. |
参考文献:
|
[1] 肖金成,张燕,公丕萍.京津冀与环渤海经济区的耦合发展--兼论“点轴-群区”发展模式[J]. 开放导报, 2022(3):7-17.XIAO J C, ZHANG Y, GONG P P. The coupling development of Beijing-Tianjin-Hebei region and Bohai Rim Economic Zone-The"Point-Axis-group area"development model[J]. China Opening Journal, 2022(3):7-17. [2] 曲平,解以扬,刘丽丽,等. 1988-2010年渤海湾海雾特征分析[J]. 高原气象, 2014, 33(1):285-293.QU P, XIE Y Y, LIU L L, et al. Character analysis of sea fog in Bohai Bay from 1988 to 2010[J]. Plateau Meteorology, 2014, 33(1):285-293. [3] 傅刚,李鹏远,张苏平,等.中国海雾研究简要回顾[J]. 气象科技进展, 2016, 6(2):20-28.FU G, LI P Y, ZHANG S P, et al. A brief overview of the sea fog study in China[J]. Advances in Meteorological Science and Technology, 2016, 6(2):20-28. [4] 王彬华.海雾[M]. 北京:海洋出版社, 1983.WANG B H. Sea fog[M]. Beijing:Ocean Press, 1983. [5] FU G, GUO J T, ANGELINE P, et al. An analysis and modeling study of a sea fog event over the Yellow and Bohai Seas[J]. Journal of Ocean University of China, 2008, 7(1):27-34. [6] GAO S H, LIN H, SHEN B, et al. A heavy sea fog event over the Yellow Sea in March 2005:analysis and numerical modeling[J]. Advances in Atmospheric Sciences, 2007, 24(1):65-81. [7] ZHANG S P, XIE S P, LIU Q Y, et al. Seasonal variations of Yellow Sea fog:observations and mechanisms[J]. Journal of Climate, 2009, 22(24):6758-6772. [8] 黄辉军.华南沿海海雾及其边界层结构的观测分析[D]. 南京:南京大学, 2013:1-141.HUANG H J. Observational analysis of sea fog and its boundary layer structure on the coast of Southern China[D]. Nanjing:Nanjing University, 2013:1-141. [9] HUANG H J, LIU H N, JIANG W M, et al. Characteristics of the boundary layer structure of sea fog on the coast of Southern China[J]. Advances in Atmospheric Sciences, 2011, 28(6):1377-1389. [10] 陈东辉,尚可政,赵中军,等.环渤海地区雾特征及其影响因子分析[J]. 气象与环境学报, 2015, 31(4):74-81.CHEN D H, SHANG K Z, ZHAO Z J, et al. Characteristics of fog and its influence factors around the Bohai coastal areas[J]. Journal of Meteorology and Environment, 2015, 31(4):74-81. [11] 郭丽君,郭学良,方春刚,等.华北一次持续性重度雾霾天气的产生、演变与转化特征观测分析[J]. 中国科学:地球科学, 2015,45(4):427-443.GUO L J, GUO X L, FANG C G, et al. Observation analysis on characteristics of formation, evolution and transition of a longlasting severe fog and haze episode in North China[J]. Science China Earth Sciences, 2015, 58(3):329-344. [12] 陈东辉,尚子溦,宁贵财,等.环渤海地区雾天气分型及预报方法[J]. 气象, 2017, 43(1):46-55.CHEN D H, SHANG Z W, NING G C, et al. Classification of fog synoptic situation and forecasting method around Bohai Sea coastal areas[J]. Meteorological Monthly, 2017, 43(1):46-55. [13] 王锐,刘彬贤.一次弱冷空气对渤海海雾影响的数值模拟研究[J]. 海洋预报, 2021, 38(6):82-92.WANG R, LIU B X. Numerical simulation study of the influence of cold air on sea fog in the Bohai[J]. Marine Forecasts, 2021, 38(6):82-92. [14] 柳龙生,黄彬.一次入海气旋在黄渤海造成的海雾过程分析[J]. 高原气象, 2022, 41(6):1460-1470.LIU L S, HUANG B. Analysis of a sea fog event caused by an extratropical cyclone over the Yellow Sea and the Bohai Sea[J]. Plateau Meteorology, 2022, 41(6):1460-1470. [15] 郑怡,李冉,史得道,等.渤海中西部近海与沿岸海雾的特征分析[J]. 海洋预报, 2016, 33(6):74-80.ZHENG Y, LI R, SHI D D, et al. Characteristics of offshore and coastal sea fog in the Mid-west Bohai Sea[J]. Marine Forecasts,2016, 33(6):74-80. [16] 吴彬贵,张宏升,张长春,等.天津城区大雾过程近地面层特征研究[J]. 气候与环境研究, 2010, 15(2):179-190.WU B G, ZHANG H S, ZHANG C C, et al. Meterological characteristics of surface layer during fog events in the urban area of Tianjin[J]. Climatic and Environmental Research, 2010, 15(2):179-190. [17] 吴彬贵,张宏升,汪靖,等.一次持续性浓雾天气过程的水汽输送及逆温特征分析[J]. 高原气象, 2009, 28(2):258-267.WU B G, ZHANG H S, WANG J, et al. Characteristics of the inversion and the water vapor transport during a duration fog event[J]. Plateau Meteorology, 2009, 28(2):258-267. [18] 田梦,吴彬贵,黄鹤,等.环渤海近海岸雾产生的天气条件及边界层特征分析[J]. 气候与环境研究, 2020, 25(2):199-210.TIAN M, WU B G, HUANG H, et al. The synoptic condition and boundary layer characteristics of coastal fog around the Bohai Sea[J]. Climatic and Environmental Research, 2020, 25(2):199-210. [19] 刘雪映,时晓曚.胶州湾大雾特征分析及不同下垫面气象要素对比分析[J]. 海洋预报, 2022, 39(4):59-68.LIU X Y, SHI X M. Analysis of heavy fog characteristics and comparative analysis of meteorological elements on different underlying surfaces in Jiaozhou Bay[J]. Marine Forecasts, 2022,39(4):59-68. [20] 岳岩裕,牛生杰,赵丽娟,等.湛江地区近海岸雾产生的天气条件及宏微观特征分析[J]. 大气科学, 2013, 37(3):609-622.YUE Y Y, NIU S J, ZHAO L J, et al. Study on the synoptic system and macro-micro characteristics of sea fog along the Zhanjiang coastal area[J]. Chinese Journal of Atmospheric Sciences, 2013, 37(3):609-622. [21] 吴诗晓,陆春松,朱磊,等.从夹卷的角度探讨雾不同阶段微物理量的变化机理[J]. 大气科学, 2021, 45(5):1057-1070.WU S X, LU C S, ZHU L, et al. Examination of mechanisms underlying the variations of microphysical properties in different fog phases from the perspective of entrainment[J]. Chinese Journal of Atmospheric Sciences, 2021, 45(5):1057-1070. [22] 乔崛,彭新东.利用尺度自适应大气边界层湍流参数化方案对一次陆地浓雾的数值模拟[J]. 气象, 2024, 50(4):449-460.QIAO J, PENG X D. Numerical simulation of a dense land fog by a scale-aware atmospheric boundary layer turbulent parameterization scheme[J]. Meteorological Monthly, 2024, 50(4):449-460. [23] 王博妮,徐芬,田小毅,等.我国近年雾研究方法及研究热点综述[J]. 气象科技, 2014, 42(1):23-30.WANG B N, XU F, TIAN X Y, et al. A review of fog weather research methods in China in recent years[J]. Meteorological Science and Technology, 2014, 42(1):23-30. [24] 何晖,金华,刘建忠,等.北京地区一次辐射雾的数值模拟[J]. 气候与环境研究, 2009, 14(4):390-398.HE H, JIN H, LIU J Z, et al. Simulation and analysis of a radiation fog event in Beijing area[J]. Climatic and Environmental Research, 2009, 14(4):390-398. [25] 高雅,刘端阳,严殊祺,等.黄海滨海地区海陆风对强浓雾生消及爆发性增强的影响[J]. 中国科学:地球科学, 2024, 54(2):451-468.GAO Y, LIU D Y, YAN S Q, et al. Influence of sea-land breeze on the formation and dissipation of severe dense fog and its burst reinforcement in the Yellow Sea coastal area, China[J]. Science China Earth Sciences, 2024, 67(2):432-449. [26] 谢超,桂海林,尤媛. 2024年1月大气环流和天气分析[J]. 气象,2024, 50(4):514-520.XIE C, GUI H L, YOU Y. Analysis of the January 2024atmospheric circulation and weather[J]. Meteorological Monthly,2024, 50(4):514-520. [27] 梁益同,张家国,刘可群,等.应用FY-1D气象卫星监测雾[J]. 气象, 2007, 33(10):68-72.LIANG Y T, ZHANG J G, LIU K Q, et al. Application of FY-1D meteorological satellite to monitoring of fog[J]. Meteorological Monthly, 2007, 33(10):68-72. [28] CHOU M D, SUAREZ M J. A solar radiation parameterization for atmospheric studies[R]. Greenbelt:Goddard Space Flight Center,1999:38. [29] HONG S Y, NOH Y, DUDHIA J. A new vertical diffusion package with an explicit treatment of entrainment processes[J]. Monthly Weather Review, 2006, 134(9):2318-2341. [30] JIMéNEZ P A, DUDHIA J, GONZáLEZ-ROUCO J F, et al. A revised scheme for the WRF surface layer formulation[J]. Monthly Weather Review, 2012, 140(3):898-918. [31] DUDHIA J. A multi-layer soil temperature model for MM5[M]. Boulder:The Sixth PSU/NCAR Mesoscale Model Users'Workshop, 1996:22-24. [32] LIM K S S, HONG S Y. Development of an effective doublemoment cloud microphysics scheme with prognostic cloud condensation nuclei(CCN)for weather and climate models[J]. Monthly Weather Review, 2010, 138(5):1587-1612. [33] KAIN J S. The Kain-Fritsch convective parameterization:an update[J]. Journal of Applied Meteorology and Climatology,2004, 43(1):170-181. [34] 刘姝.雾顶夹卷强度对黄海海雾发展的影响[D]. 中国海洋大学, 2018.LIU S. Impact of Entrainment Intensity at the Fog Top on the Development of Sea Fog in the Yellow Sea[D]. Ocean University of China, 2018. [35] YANG Y, GAO S H. The impact of turbulent diffusion driven by fog-top cooling on sea fog development[J]. Journal of Geophysical Research:Atmospheres, 2020, 125(4):e2019JD031562. |
服务与反馈:
|
【文章下载】【发表评论】【查看评论】【加入收藏】
|
|
|