舟山一次由脉冲风暴引起的下击暴流雷暴大风成因分析 |
作者:潘琳1 黄新晴2 韩永翔3 徐逸雯1 王倩1 |
单位:1. 舟山市气象局, 浙江 舟山 316000; 2. 浙江省气象台, 浙江 杭州 310000; 3. 南京信息工程大学气象灾害预报预警与评估协同创新中心, 中国气象局气溶胶-云-降水重点开放实验室, 江苏 南京 210044 |
关键词:脉冲风暴 下击暴流 雷暴大风 密度流 |
分类号:P732 |
|
出版年·卷·期(页码):2025·42·第四期(74-84) |
摘要:
|
利用地面加密自动站逐小时资料、多普勒天气雷达探测资料、FY-4A可见光云图以及ERA5再分析等资料,对2022年7月17日发生在舟山市的一次下击暴流过程进行诊断分析。结果表明:本次过程发生在弱垂直风切变和强热力不稳定环境中,自由对流高度较低,使得宁波—舟山一带出现脉冲风暴;云街代表当地存在弱垂直风切变和一定的水汽条件,对脉冲风暴具有指示意义,脉冲风暴强烈发展引发下击暴流,反射率因子核心从7 km高度快速下降到地面后在舟山岛西侧形成地面辐合线,使得风暴东移加强;降水粒子在下降至900 hPa后蒸发降温,在加强下沉气流的同时,也在地面形成了中心气温低于26℃的冷池,并产生冷池密度流,与单体下沉辐散气流叠加后造成了9~11级的雷暴大风。 |
Based on the hourly data from automatic weather stations, Doppler weather radar data, FY-4A visible satellite imagery and ERA5 reanalysis data, a downburst thunderstorm event occurred in Zhoushan on 17 July 2022 is analyzed. The results show that this event occurs in weak vertical wind shear and strong thermal instability environment with lower free convection height, resulting in pulse thunderstorm from Ningbo to Zhoushan. The cloud street reveals the existence of weak vertical wind shear and certain water vapor condition in the area suggesting the appearance of pulse thunderstorm. Strong development of the pulse thunderstorm triggers downburst. The reflectivity factor core rapidly descends from a height of 7 km to the ground, and forms a surface convergence line in the western Zhoushan, which strengthens the storm along with the eastward movement. The precipitation particles evaporate after falling to 900 hPa, which causes the air cooling, and a cold pool with central temperature lower than 24 ℃ is formed on the ground, generating density flow in the cold pool. The sinking divergent airflow superimposing the density flow causes thunderstorm gale of grade 9~11. |
参考文献:
|
[1] 俞小鼎,姚秀萍,熊廷南,等.多普勒天气雷达原理与业务应用[M]. 北京:气象出版社, 2006:102-103.YU X D, YAO X P, XIONG T N, et al. Principles and business applications of Doppler weather radar[M]. Beijing:China Meteorological Press, 2006:102-103. [2] FUJITA T T, BYERS H R. Spearhead echo and downburst in the crash of an airliner[J]. Monthly Weather Review, 1977, 105(2):129-146. [3] FUJITA T T. The downburst:microburst and macroburst, report of projects NIMROD and JAWS/T. Theodore Fujita[R]. Chicago:University of Chicago, 1985:1-122. [4] WAKIMOTO R M. Forecasting dry microburst activity over the high plains[J]. Monthly Weather Review, 1985, 113(7):1131-1143. [5] PROCTOR F H. Numerical simulations of an isolated microburst.PartⅡ:sensitivity experiments[J]. Journal of the Atmospheric Sciences, 1989, 46(14):2143-2165. [6] MAHALE V N, ZHANG G F, XUE M. Characterization of the 14June 2011 Norman, Oklahoma, downburst through dualpolarization radar observations and hydrometeor classification[J]. Journal of Applied Meteorology and Climatology, 2016, 55(12):2635-2655. [7] 郑永光,田付友,孟智勇,等.“东方之星”客轮翻沉事件周边区域风灾现场调查与多尺度特征分析[J]. 气象, 2016, 42(1):1-13.ZHENG Y G, TIAN F Y, MENG Z Y, et al. Survey and multi-scale characteristics of wind damage caused by convective storms in the surrounding area of the capsizing accident of cruise ship“Dongfangzhixing”[J]. Meteorological Monthly, 2016, 42(1):1-13. [8] 贾旭轩,梁军,刘晓初,等.辽东半岛一次湿下击暴流过程分析[J]. 高原气象, 2024, 43(2):411-420.JIA X X, LIANG J, LIU X C, et al. Analysis of a wet downburst in the Liaodong Peninsula[J]. Plateau Meteorology, 2024, 43(2):411-420. [9] 李彩玲,蔡康龙,黄先香,等.桂林一次强下击暴流成因分析[J]. 气象, 2021, 47(2):242-252.LI C L, CAI K L, HUANG X X, et al. Cause analysis of a severe downburst in Guilin[J]. Meteorological Monthly, 2021, 47(2):242-252. [10] FUJITA T T, WAKIMOTO R M. Five scales of airflow associated with a series of downbursts on 16 July 1980[J]. Monthly Weather Review, 1981, 109(7):1438-1456. [11] POTTS R. Microburst precursors observed with Doppler radar[C] //Proceedings of the 24th Conference on Radar Meteorology.Boston:American Meteorology Society, 1989:158-162. [12] ROBERTS R D, WILSON J W. A proposed microburst nowcasting procedure using single-Doppler radar[J]. Journal of Applied Meteorology, 1989, 28(4):285-303. [13] 孙凌峰,郭学良,孙立潭,等.武汉“6·22”空难下击暴流的三维数值模拟研究[J]. 大气科学, 2003, 27(6):1077-1092.SUN L F, GUO X L, SUN L T, et al. A numerical study of the airplane disaster-producing microburst on 22 June 2000 in Wuhan[J]. Chinese Journal of Atmospheric Sciences, 2003, 27(6):1077-1092. [14] 俞小鼎,张爱民,郑媛媛,等.一次系列下击暴流事件的多普勒天气雷达分析[J]. 应用气象学报, 2006, 17(4):385-393.YU X D, ZHANG A M, ZHENG Y Y, et al. Doppler radar analysis on a series of downburst events[J]. Journal of Applied Meteorological Science, 2006, 17(4):385-393. [15] 李根,吴福浪,郑怡.冷涡背景下一次致灾超级单体雹暴过程的数值模拟[J]. 气象科技, 2021, 49(2):218-226.LI G, WU F L, ZHENG Y. A numerical simulation study of a supercell hailstorm under a cold vortex[J]. Meteorological Science and Technology, 2021, 49(2):218-226. [16] 王秀明,周小刚,俞小鼎.雷暴大风环境特征及其对风暴结构影响的对比研究[J]. 气象学报, 2013, 71(5):839-852.WANG X M, ZHOU X G, YU X D. Comparative study of environmental characteristics of a windstorm and their impacts on storm structures[J]. Acta Meteorologica Sinica, 2013, 71(5):839-852. [17] 孙继松,戴建华,何立富,等.强对流天气预报的基本原理与技术方法--中国强对流天气预报手册[M]. 北京:气象出版社,2019:75-76.SUN J S, DAI J H, HE L F, et al. The basic principles and technical methods of severe convective weather forecasting[M]. Beijing:China Meteorological Press, 2019:75-76. [18] 郑永光,陶祖钰,俞小鼎.强对流天气预报的一些基本问题[J]. 气象, 2017, 43(6):641-652.ZHENG Y G, TAO Z Y, YU X D. Some essential issues of severe convective weather forecasting[J]. Meteorological Monthly, 2017,43(6):641-652. [19] 俞小鼎,王秀明,李万莉,等.雷暴与强对流临近预报[M]. 北京:气象出版社, 2020:298-299.YU X D, WANG X M, LI W L, et al. Forecast of thunderstorms and severe convection approaching[M]. Beijing:China Meteorological Press, 2020:298-299. [20] 侯淑梅,李昱薇,张鹏,等.“4.29”山东近海10级以上雷暴大风的成因分析[J]. 气象, 2022, 48(10):1242-1256.HOU S M, LI Y W, ZHANG P, et al. Cause of a thunderstorm gale event over grade 10 along the Shandong coast on 29 April2021[J]. Meteorological Monthly, 2022, 48(10):1242-1256. |
服务与反馈:
|
【文章下载】【发表评论】【查看评论】【加入收藏】
|
|
|