首页期刊介绍通知公告编 委 会投稿须知电子期刊广告合作联系我们在线留言
 
一次冬季浙北入海雷暴天气诊断模拟分析
作者:马晨1 2  李超1  陈宇霄3  刘安宁1  刘英明4  蒋义芳1 
单位:1. 江苏省气象台, 江苏 南京 210019;
2 中国气象局交通气象重点开放实验室, 江苏 南京 210019;
3. 南京信息工程大学, 江苏南京 210044;
4. 北京华云通合科技发展有限公司, 北京 100081
关键词:雷暴 WRF-ARW模式 热力差异 地形 
分类号:P732
出版年·卷·期(页码):2025·42·第四期(85-93)
摘要:
利用多普勒天气雷达资料、地面观测和区域自动站资料、探空资料、ERA5逐小时再分析资料(水平分辨率0.25°×0.25°)以及WRF-ARW数值模式,对2019年2月26日发生在浙北沿海的一次冬季雷暴过程进行了分析。结果表明:此次雷暴过程受地面的冷高压和中低层的暖湿气流共同影响,近地面层有明显的冷垫,层结较为稳定,以下沉运动为主;而中低层存在逆温层结,有较好的动力和水汽条件,以上升运动为主;此次雷暴过程是从边界层顶发展维持的,是一次高架雷暴;中低层的逆温层为此次高架雷暴的发生和发展提供了重要的温度层结条件。模式能够较好地重现本次冬季高架雷暴的发生—发展—入海减弱—消亡的过程。敏感试验表明:高架雷暴入海后,浙东海面的地形有利于雷暴回波的维持。更高的海面温度使得低层大气更加不稳定,破坏了逆温层结,使得高架雷暴入海后难以维持,这可能是此次冬季高架雷暴入海减弱的原因之一。
Based on Doppler weather radar data, surface observations, ERA5 hourly reanalysis data(with a horizontal resolution of 0.25°×0.25°), and the WRF-ARW numerical model, an analysis was conducted on a winter thunderstorm event along the northern coast of Zhejiang that occurred on February 26, 2019. The results showed that this thunderstorm process was influenced by the surface cold high pressure and warm moist airflow at the middle and lower levels. There was a significant cold pool near the surface, with relatively stable stratification and dominant subsidence. In contrast, the middle and lower levels exhibited an inversion layer with favorable dynamic and moisture conditions, characterized by dominant upward motion. This thunderstorm developed and maintained from the top of the boundary layer, making it an elevated thunderstorm. The inversion layer in the middle and lower levels provided crucial thermal stratification condition for the development of this elevated thunderstorm. The WRF model was able to accurately reproduce the occurrence, development, weakening, and dissipation of this winter elevated thunderstorm. Sensitivity experiments showed that after the elevated thunderstorm moved over the sea, the terrain of the eastern Zhejiang sea area was conducive to the maintenance of thunderstorm. Higher sea surface temperature made the lower atmosphere more unstable disrupting the inversion layer and the elevated thunderstorm. This could be one of the reasons for the weakening of this winter elevated thunderstorm after it moved over the sea.
参考文献:
[1] 陈思蓉,朱伟军,周兵.中国雷暴气候分布特征及变化趋势[J]. 大气科学学报, 2009, 32(5):703-710.CHEN S R, ZHU W J, ZHOU B. Climate characteristic and variation tendency of thunderstorm in China[J]. Transactions of Atmospheric Sciences, 2009, 32(5):703-710.
[2] 张恒进,郑永光.基于逐时观测的1971-2010年中国大陆雷暴气候特征[J]. 气象学报, 2022, 80(1):54-66.ZHANG H J, ZHENG Y G. Thunderstorm climatology over China's mainland based on hourly observations during 1971-2010[J]. Acta Meteorologica Sinica, 2022, 80(1):54-66.
[3] 王婷波,周康辉,郑永光.我国中东部雷暴活动特征分析[J]. 气象, 2020, 46(2):189-199.WANG T B, ZHOU K H, ZHENG Y G. Statistic analysis of thunderstorm characteristics in central and eastern China[J]. Meteorological Monthly, 2020, 46(2):189-199.
[4] 周鑫,张文娟,张义军,等.基于闪电聚类方法的西北太平洋区域雷暴活动特征[J]. 热带气象学报, 2021, 37(3):490-501.ZHOU X, ZHANG W J, ZHANG Y J, et al. Characteristics of thunderstorm activity in the Northwest Pacific based on lightning clustering method[J]. Journal of Tropical Meteorology, 2021, 37(3):490-501.
[5] 郑栋,张文娟,姚雯,等.雷暴闪电活动特征研究进展[J]. 热带气象学报, 2021, 37(3):289-297.ZHENG D, ZHANG W J, YAO W, et al. Research progress of lightning activity in thunderstorms[J]. Journal of Tropical Meteorology, 2021, 37(3):289-297.
[6] COLMAN B R. Thunderstorms above frontal surfaces in environments without positive CAPE. PartⅡ:Organization and instability mechanisms[J]. Monthly Weather Review, 1990, 118(5):1123-1144.
[7] OSTBY F P. Improved accuracy in severe storm forecasting by the severe local storms unit during the last 25 years:Then versus now[J]. Weather and Forecasting, 1999, 14(4):526-543.
[8] 闫文辉,黄兴友,赵钰锦,等.基于改进DBSCAN聚类算法的雷暴单体三维结构识别技术介绍[J]. 热带气象学报, 2020, 36(4):542-551.YAN W H, HUANG X Y, ZHAO Y J, et al. Introduction of 3D structure detection technology of thunderstorm cell based on improved DBSCAN clustering algorithm[J]. Journal of Tropical Meteorology, 2020, 36(4):542-551.
[9] YANG J, ZHAO K, CHEN X C, et al. Subseasonal and diurnal variability in lightning and storm activity over the Yangtze River Delta, China, during Mei-yu season[J]. Journal of Climate, 2020, 33(12):5013-5033.
[10] 贺靓,于超,吕新民,等.渤海中南部海区一次雷暴大风过程分析[J]. 海洋预报, 2011, 28(1):19-24.HE L, YU C, LYU X M, et al. Analysis of a thunderstorm gale process in the south-central Bohai Sea[J]. Marine Forecasts, 2011,28(1):19-24.
[11] 宋晓姜,邢建勇,王彰贵.渤海一次强阵性雷雨大风过程的诊断分析[J]. 海洋预报, 2013, 30(2):22-29.SONG X J, XING J Y, WANG Z G. A strong convection weather in the Bohai Sea[J]. Marine Forecasts, 2013, 30(2):22-29.
[12] KEENAN T D, FERRIER B, SIMPSON J. Development and structure of a maritime continent thunderstorm[J]. Meteorology and Atmospheric Physics, 1994, 53(3):185-222.
[13] JAYAKRISHNAN P R, SIVAPRASAD P, CHENOLI S N, et al.Sea breeze characteristics over a coastal station in peninsular Malaysia[J]. Journal of Earth System Science, 2021, 130(3):126.
[14] 胡文东,杨侃,文小航,等.阵风锋差异及强迫作用对雷暴触发影响的模拟分析[J]. 高原气象, 2021, 40(4):773-788.HU W D, YANG K, WEN X H, et al. Stimulation analysis on differences and force effects of gust fronts in a severe convection trigging process[J]. Plateau Meteorology, 2021, 40(4):773-788.
[15] 汪雅,苗峻峰,谈哲敏.宁波地区海-陆下垫面差异对雷暴过程影响的数值模拟[J]. 气象学报, 2013, 71(6):1146-1159.WANG Y, MIAO J F, TAN Z M. Numerical study of the impact of differences between sea and land underlying surface on thunderstorm in the Ningbo area[J]. Acta Meteorologica Sinica,2013, 71(6):1146-1159.
[16] HONG S Y, LIM J J O. The WRF single-moment 6-class microphysics scheme(WSM6)[J]. Journal of the Korean Meteorological Society, 2006, 42(2):129-151.
[17] KAIN J S, FRITSCH J M. Convective parameterization for mesoscale models:The Kain-Fritsch scheme[M] //EMANUEL K A,RAYMOND D J. The Representation of Cumulus Convection in Numerical Models. Boston:American Meteorological Society,1993:165-170.
服务与反馈:
文章下载】【发表评论】【查看评论】【加入收藏
 
 海洋预报编辑部 地址:北京海淀大慧寺路8号 电话:010-62105776
投稿网址:http://www.hyyb.org.cn
邮箱:bjb@nmefc.cn
本系统由北京博渊星辰网络科技有限公司设计开发 技术支持电话:010-63361626