| 基于风、浪、流参数的畸形波发生概率预测方法研究 |
| 作者:王译启1 任林1 杨劲松1 2 李晓辉1 韩心海1 2 |
单位:1. 自然资源部第二海洋研究所 卫星海洋环境动力学国家重点实验室, 浙江 杭州 310012; 2. 上海交通大学 海洋学院, 上海 200240 |
| 关键词:畸形波 有效波高 波浪浮标 风速 |
| 分类号:P731.33 |
|
| 出版年·卷·期(页码):2025·42·第六期(24-33) |
|
摘要:
|
| 基于58个波浪浮标的观测数据及风场、流场的再分析资料,利用滑动窗口法分析了多个海况参数与畸形波发生概率(RWO)的关系。结果表明:有效波高与RWO之间存在显著的负相关关系;随着风速增加,RWO先减小后增大,随着流速增加,RWO先增大后减小,但均在特定阈值处转折;不同风浪夹角下RWO变化较小,浪流夹角为锐角时RWO略大;随着相对水深增加,RWO存在一定下降趋势。从海况参数与RWO的相关性出发,选择有效波高作为主要建模参数。在此基础上,由于不同风速对畸形波的调制作用不同,探讨了不同风速下畸形波发生概率随有效波高的变化情况,并确定了最佳风速阈值。根据不同风速条件下有效波高与RWO的关系,将低风速与中等风速小波高(有效波高≤5 m)数据合并建模,中等风速大波高(有效波高>5 m)单独建模,并在测试集上进行验证。结果表明:在低风速及中等风速小波高条件下,真实RWO与模型预测RWO的决定系数和均方根误差分别为0.97和0.001 9;中等风速大波高条件下分别为0.81和0.003 5。 |
| Based on observational data of 58 wave buoys and reanalysis data of wind and ocean current, the relationship between multiple sea state parameters and rogue wave occurrence(RWO) is analyzed based on sliding window method. The results show that there is a significant negative correlation between effective wave height and the RWO. The RWO first decreases and then increases along with the increase of wind speed, while first increases and then decreases along with the increase of current speed. The RWO changes small under different wind-wave angles, but is relatively large under acute current-wave angle. The RWO has a downward trend when the relative water depth increases. Significant wave height is selected as the main parameter to build model considering the correlation between sea state parameters and the RWO. Further, the change of the RWO with significant wave height under different wind speeds is discussed and the optimal wind speed threshold is determined. As a result, the data of low-moderate wind speed with small wave height(significant wave height ≤5 m) are categorized to build a model, and the data of medium wind speed with large wave height(significant wave height >5 m) are separately categorized to build a model. Validation shows that the coefficient of determination and root mean square error between the real RWO and the predicted RWO are 0.97 and 0.001 9 under low-moderate wind speed with small wave height, and the values are 0.81 and 0.0035 under medium wind speed with large wave height. |
|
参考文献:
|
[1] 陶爱峰,沈至淳,李硕,等.中国灾害性海浪研究进展[J].科技导报, 2018, 36(14):26-34.TAO A F, SHEN Z C, LI S, et al. Research progrecs for disastrous waves in China[J]. Science&Technology Review, 2018, 36(14):26-34. [2] KHARIF C, PELINOVSKY E. Physical mechanisms of the rogue wave phenomenon[J]. European Journal of Mechanics-B/Fluids,2003, 22(6):603-634. [3] DIDENKULOVA I, ANDERSON C. Freak waves of different types in the coastal zone of the Baltic Sea[J]. Natural Hazards and Earth System Sciences, 2010, 10(9):2021-2029. [4] NIKOLKINA I, DIDENKULOVA I. Catalogue of rogue waves reported in media in 2006-2010[J]. Natural Hazards, 2012, 61(3):989-1006. [5] NIKOLKINA I, DIDENKULOVA I. Rogue waves in 2006-2010[J]. Natural Hazards and Earth System Sciences, 2011, 11(11):2913-2924. [6] LI S F, XIE X H, CHEN D K, et al. Modulation effect of linear shear flow, wind, and dissipation on freak wave generation in finite water depth[J]. Physics of Fluids, 2023, 35(9):097126. [7] WHITE B S, FORNBERG B. On the chance of freak waves at sea[J]. Journal of Fluid Mechanics, 1998, 355:113-138. [8] PELINOVSKY E, SERGEEVA A. Numerical modeling of the KdV random wave field[J]. European Journal of Mechanics-B/Fluids,2006, 25(4):425-434. [9] DIDENKULOVA E. Catalogue of rogue waves occurred in the World Ocean from 2011 to 2018 reported by mass media sources[J]. Ocean&Coastal Management, 2020, 188:105076. [10] DIDENKULOVA E, DIDENKULOVA I, MEDVEDEV I. Freak wave events in 2005-2021:statistics and analysis of favourable wave and wind conditions[J]. Natural Hazards and Earth System Sciences, 2023, 23(4):1653-1663. [11] BASCHEK B, IMAI J. Rogue wave observations off the US West Coast[J]. Oceanography, 2011, 24(2):158-165. [12] CATTRELL A D, SROKOSZ M, MOAT B I, et al. Can rogue waves be predicted using characteristic wave parameters?[J].Journal of Geophysical Research:Oceans, 2018, 123(8):5624-5636. [13] ORZECH M D, WANG D. Measured rogue waves and their environment[J]. Journal of Marine Science and Engineering,2020, 8(11):890. [14] AZEVEDO L, MEYERS S, PLESKACHEVSKY A, et al.Characterizing rogue waves at the entrance of Tampa Bay (Florida, USA)[J]. Journal of Marine Science and Engineering,2022, 10(4):507. [15] BEHRENS J, THOMAS J, TERRILL E, et al. CDIP:maintaining a robust and reliable ocean observing buoy network[C]//Proceedings of the 2019 IEEE/OES Twelfth Current, Waves and Turbulence Measurement (CWTM). San Diego:IEEE, 2019:1-5. [16] Copernicus Climate Change Service, Climate Data Store. ERA5hourly data on single levels from 1940 to present[J]. Copernicus Climate Change Service (C3S) Climate Data Store (CDS), 2023. [17] XUE H J, BANE J M JR. A numerical investigation of the Gulf Stream and its meanders in response to cold air outbreaks[J].Journal of Physical Oceanography, 1997, 27(12):2606-2629. [18] 谢涛,南撑峰,旷海兰,等.反常波海面参数计算方法及其色散关系[J].物理学报, 2009, 58(6):4011-4019.XIE T, NAN C F, KUANG H L, et al. Numerical calculation of parameters of freak wave and its dispersion relation[J]. Acta Physica Sinica, 2009, 58(6):4011-4019. [19] 刘首华,牟林,刘克修,等.畸形波研究的进展及存在问题[J].地球科学进展, 2013, 28(6):665-673.LIU S H, MU L, LIU K X, et al. Research advance and problems in freak waves[J]. Advances in Earth Science, 2013, 28(6):665-673. [20] 赵西增.畸形波的实验研究和数值模拟[D].大连:大连理工大学, 2008.ZHAO X Z. Experimental and numerical study of freak waves[D]. Dalian:Dalian University of Technology, 2008. [21] 刘首华.畸形波的海浪数值模拟研究[D].青岛:中国海洋大学,2010.LIU S H. Study of freak waves based on numerical ocean waves simulation[D]. Qingdao:Ocean University of China, 2010. [22] WILSON J R, BAIRD W F. A discussion of some measured wave data[C]//13th International Conference on Coastal Engineering.Vancouver:ASCE, 1972:113-130. [23] MCALLISTER M L, VAN DEN BREMER T S. Experimental study of the statistical properties of directionally spread ocean waves measured by buoys[J]. Journal of Physical Oceanography,2020, 50(2):399-414. [24] CHRISTOU M, EWANS K. Field measurements of rogue water waves[J]. Journal of Physical Oceanography, 2014, 44(9):2317-2335. [25] TRULSEN K, DYSTHE K B. Action of windstress and breaking on the evolution of a wavetrain[C]//Proceedings of the IUTAM Symposium Sydney, Australia 1991 on Breaking Waves. Berlin:Springer, 1992:243-249. [26] GALCHENKO A, BABANIN A V, CHALIKOV D, et al.Influence of wind forcing on modulation and breaking of onedimensional deep-water wave groups[J]. Journal of Physical Oceanography, 2012, 42(6):928-939. [27] WHEELER D, WILKINSON C. From calm to storm:the origins of the beaufort wind scale[J]. The Mariner's Mirror, 2004, 90(2):187-201. [28] TAYLOR K E. Summarizing multiple aspects of model performance in a single diagram[J]. Journal of Geophysical Research:Atmospheres, 2001, 106(D7):7183-7192. |
|
服务与反馈:
|
|
【文章下载】【发表评论】【查看评论】【加入收藏】
|
|
|