首页期刊介绍通知公告编 委 会投稿须知电子期刊广告合作联系我们在线留言
 
粉砂质高回淤港口与航道疏浚扰动减淤数值模拟研究
作者:莫志芳1  毛晓翀1  路川藤2  王松1 
单位:1. 中交广航疏浚有限公司, 广东 广州 510000;
2. 南京水利科学研究院, 江苏 南京 210029
关键词:射阳港与航道 疏浚扰动 数值模拟 泥沙淤积 
分类号:P731.21
出版年·卷·期(页码):2025·42·第六期(34-45)
摘要:
射阳海域受强潮动力、高含沙量及平缓地形影响,港口与航道泥沙回淤速率快、维护成本高。针对粉砂质港口减淤需求,建立射阳海域二维潮流泥沙数学模型,提出基于落潮动力调控的疏浚扰动减淤方法。研究表明:疏浚扰动可显著提升泥沙外输效率,港区泥沙扰动后,大潮落潮期8.86%的扰动泥沙输出至航道口门外(小潮为3.66%),且扰动区越靠近口门,外输比例越高(达15%~50%);扰动泥沙二次淤积呈现空间分异特征,在口门内二次淤积占比中,大潮期占46.25%、小潮期占49.74%,扰动区下游2 km范围淤积量占口门内淤积总量的60%~70%;径流量增大后,泥沙外输比显著提升,二次淤积占比下降。
The Sheyang coastal area is influenced by strong tidal dynamics, high sediment concentration, and gentle topography, leading to rapid siltation and high maintenance costs in its ports and navigation channels. To address the sediment reduction demands of silt-prone ports, this study establishes a two-dimensional tidal current and sediment transport mathematical model for the Sheyang coastal area and proposes a dredging disturbance method for sediment reduction based on ebb-tide dynamic regulation. The results show that dredging disturbance significantly enhances sediment transport efficiency. After sediment disturbance in the port area, 8.86% of the disturbed sediment are transported outside the channel entrance during spring tide ebb(3.66% during neap tide),with higher export ratios(15%~50%) observed when disturbance zones are closer to the entrance. The secondary siltation of disturbed sediment exhibites spatial heterogeneity: 46.25% of the disturbed sediment redeposites within the channel during spring tide(49.74% during neap tide), and 60%~70% of the total redeposition within the entrance occurs within 2 km downstream of the disturbance zones. Increased river discharge further improves sediment export ratios and reduces secondary siltation.
参考文献:
[1] 任实,胡兴娥,邢龙,等.三峡水库坝前深水清淤疏浚技术研究[J].长江科学院院报, 2023, 40(1):24-28.REN S, HU X E, XING L, et al. Aerodynamic dredging technology for deep water in front of three gorges reservoir[J]. Journal of Yangtze River Scientific Research Institute, 2023, 40(1):24-28.
[2] 王萍.黄骅港航道淤积预测及优化清淤研究[D].保定:河北农业大学, 2014.WANG P. Prediction and optimization dredging research in port of Huanghua channel[D]. Baoding:Hebei Agricultural University,2014.
[3] 朱剑飞.长江口深水航道治理二期工程疏浚工程的实施与工程管理[C]//第二届中国国际疏浚技术发展会议论文集.广州,2006:1-9.ZHU J F. Implementation and management of dredging project of Yangtze Estuary deepwater channel regulation phase II project[C]//Proceedings of the Second China International Dredging Technology Development Conference. Guangzhou, 2006:1-9.
[4] 路川藤,贾晓,韩玉芳,等.台风浪作用下长江口深水航道骤淤数值模拟[J].水科学进展, 2018, 29(5):696-705.LU C T, JIA X, HAN Y F, et al. Numerical simulation of sudden silting in the Yangtze Estuary deepwater channel by the wave of typhoon[J]. Advances in Water Science, 2018, 29(5):696-705.
[5] 李观明,朱永楷,顾峰峰,等.长江口深水航道回淤量随水文条件变化的特征分析[J].水道港口, 2023, 44(5):763-771.LI G M, ZHU Y K, GU F F, et al. Characteristic analysis of the change of back-siltation with hydrological conditions in deep navigation of the Yangtze Estuary[J]. Journal of Waterway and Harbor, 2023, 44(5):763-771.
[6] 丛新,朱文谨,巩妮娜,等.近海挡潮闸闸下淤积问题及处理研究综述[J].盐城工学院学报(自然科学版), 2018, 31(1):6-10.CONG X, ZHU W J, GONG N N, et al. Research review on the problem and treatment of the siltation under the tidal gate in coastal waters[J]. Journal of Yancheng Institute of Technology (Natural Science Edition), 2018, 31(1):6-10.
[7] 徐进超,李云,宣国祥,等.船闸泄水作用下引航道中动水冲沙规律[J].水科学进展, 2016, 27(2):186-195.XU J C, LI Y, XUAN G X, et al. Study on the sediment scouring rules by dynamic water effect in approach channel under the action of ship lock sluicing[J]. Advances in Water Science, 2016, 27(2):186-195.
[8] 陈犇,丁磊,丁跃,等.气动冲沙技术在新沂河海口枢纽挡潮闸的应用[J].江苏水利, 2023(11):8-12.CHEN B, DING L, DING Y, et al. Application of pneumatic antisilting technology in the tide gates of Xinyi River estuary hub[J].Jiangsu Water Resources, 2023(11):8-12.
[9] 丁磊,陈黎明,罗勇,等.城市人工湖淤积模拟与"气动冲沙"防淤措施[C]//第十九届中国海洋(岸)工程学术讨论会论文集.舟山,2019:947-954.DING L, CHEN L M, LUO Y, et al. Urban artificial lake siltation simulation and pneumatic sand flushing anti-silting measures[C]//Proceedings of the 19th China Ocean (Shore) Engineering Symposium. Zhoushan, 2019:947-954.
[10] 杨啸宇,丁磊,罗勇,等.河口挡潮闸气动冲沙减淤防淤技术初探[C]//第二十届中国海洋(岸)工程学术讨论会论文集.湛江,2022:1030-1036.YANG X Y, DING L, LUO Y, et al. Preliminary study on pneumatic sand flushing technology for sediment reduction and prevention at estuary tidal barriers[C]//Proceedings of the 20th China Ocean (Coastal) Engineering Symposium. Zhanjiang,2022:1030-1036.
[11] 袁文昊,刘红.江苏射阳港3.5万吨级进港航道回淤特征研究[J].水运工程, 2022(1):112-118.YUAN W H, LIU H. Back silting characteristics of 35,000 DWT navigation channel at Sheyang Port in Jiangsu Province[J]. Port&Waterway Engineering, 2022(1):112-118.
[12] 刘加模,栾加友.射阳港潮汐与乘潮进港[J].海岸工程, 2000, 19(1):54-58.LIU J M, LUAN J Y. Tide and enter port of tidal boat of Sheyang harbor[J]. Coastal Engineering, 2000, 19(1):54-58.
[13] 刘强,张刚,项立辉,等.射阳港区双导堤建设前后冲淤变化及成因研究[J].海洋通报, 2017, 36(5):561-567.LIU Q, ZHANG G, XIANG L H, et al. Characteristics and genesis of erosion and deposition in Sheyang Port before and after double-dyke construction[J]. Marine Science Bulletin, 2017,36(5):561-567.
[14] 孟江山,路川藤,罗小峰,等.基于GPU并行的厦门附近海域潮波传播数值模拟研究[J].中国水利水电科学研究院学报, 2021,19(4):424-433.MENG J S, LU C T, LUO X F, et al. The tidal wave propagation simulation in sea area near Xiamenwith GPU parallel computation[J]. Journal of China Institute of Water Resources and Hydropower Research, 2021, 19(4):424-433.
[15] 王炯琦.航道疏浚对水体水质影响的模拟研究[D].重庆:重庆交通大学, 2014.WANG J Q. The quality simulating studies of the waterway dredging's impact on water quality[D]. Chongqing:Chongqing Jiaotong University, 2014.
服务与反馈:
文章下载】【发表评论】【查看评论】【加入收藏
 
 海洋预报编辑部 地址:北京海淀大慧寺路8号 电话:010-62105776
投稿网址:http://www.hyyb.org.cn
邮箱:bjb@nmefc.cn
本系统由北京博渊星辰网络科技有限公司设计开发 技术支持电话:010-63361626