首页期刊介绍通知公告编 委 会投稿须知电子期刊广告合作联系我们在线留言
 
北极海冰面积变化及东北航道适航性研究
作者:蒋攀1  甘滨蕊1 2 3  杨胜发1 2 3 
单位:1. 重庆交通大学 水利水运工程教育部重点实验室, 重庆 400074;
2. 重庆交通大学 河海学院, 重庆 400074;
3. 重庆交通大学 国家内河航道整治工程技术研究中心, 重庆 400074
关键词:东北航道 北极 海冰面积 适航性 
分类号:P731.32;P727
出版年·卷·期(页码):2025·42·第六期(55-64)
摘要:
为明晰北极冰情变化及适航性,研究基于AMSR-E/AMSR2(OUC2)和FY-3D/MWRI(OUC3)两种逐日海冰密集度数据,采用目视解译与权重分析方法,分析2003—2023年北极海冰面积变化及东北航道适航性。结果表明:两种数据在海冰季节变化和通航关键区域方面表现一致,但OUC2数据因空间分辨率较高,识别出的海冰面积范围更广,解译出的可通航天数更高;北极海冰面积变化具有明显的季节循环性,4—9月面积减少约70%,10月—次年3月面积增长约95%,太阳辐射及其引起的气温、海温变化是主要驱动因素;影响东北航道通航的关键区域为维利基茨基海峡、北地群岛、新西伯利亚群岛和东西伯利亚海;2020年之前,两个数据集显示的东北航道可通航天数呈波动上升趋势,但2021—2023年可通航天数均显著下降,其中OUC2数据从105天降至37天,OUC3数据从104天降至29天,这主要由于大气环流状态发生变化,导致海冰输运到拉普捷夫海和东西伯利亚海区域堆积并堵塞航道,减少了可通航天数。
To study the changes in sea ice conditions and navigability of the Arctic Northeast Passage, based on the daily Arctic sea ice concentration from the AMSR-E/AMSR2(OUC2) and FY-3D/MWRI(OUC3) data, we investigate sea ice area variability and the navigability of the Northeast Passage(NEP) from 2003 to 2023 using the eye interpretation and weighting analysis methods. The results show that: Both datasets show consistency in seasonal sea ice variations and key navigable regions, and the OUC2 data with a higher spatial resolution presents a broader sea ice area and yields higher navigable days compared to the OUC3 data. The Arctic sea ice area changes follow a clear seasonal cycle, decreasing by approximately 70% from April to September and increasing by about 95% from October to next March, primarily driven by solar radiation and the associated air temperature and sea surface temperature changes. The key regions affecting the navigability of the NEP are Vilkitsky Strait,Severnaya Zemlya Islands, New Siberian Islands, and the East Siberian Sea. The navigable days of the NEP in both datasets have a fluctuating upward trend before 2020, but significantly decrease between 2021 and 2023(OUC2: from 105 days to 37 days; OUC3: from 104 days to 29 days), primarily due to changes in atmospheric circulation leading to the accumulation of sea ice in the Laptev Sea and East Siberian Sea, which blocks the passage and reduces navigable days.
参考文献:
[1] RANTANEN M, KARPECHKO A Y, LIPPONEN A, et al. The Arctic has warmed nearly four times faster than the globe since1979[J]. Communications Earth&Environment, 2022, 3(1):168.
[2] 彭振武,王云闯.北极航道通航的重要意义及对我国的影响[J].水运工程, 2014(7):86-89.PENG Z W, WANG Y C. Significance and domestic impact of navigable Arctic channel[J]. Port&Waterway Engineering, 2014(7):86-89.
[3] 国际船舶网.深度:北极航道的优与劣[EB/OL].航运交易公报.(2017-6-6). https://www. eworldship. com/html/2017/ship_inside_and_outside_0606/128794.html.International Ship Network. Depth:advantages and disadvantages of the Arctic passage[EB/OL]. Shipping Transactions Bulletin.(2017-6-6). https://www. eworldship. com/html/2017/ship_inside_and_outside_0606/128794.html.
[4] 胡麦秀,冀丙蕾.依托北极东北航道建设"冰上丝绸之路"研究综述[J].海洋开发与管理, 2020, 37(2):12-18.HU M X, JI B L. A summary of studies on the'ice silk road'based on the construction of the Arctic northeast passage[J]. Ocean Development and Management, 2020, 37(2):12-18.
[5] 李振华.基于冰情分析的北极东北航道通航条件研究[D].大连:大连海事大学, 2017.LI Z H. Research on the navigability of the Arctic northeast passage based on sea ice conditions[D]. Dalian:Dalian Maritime University, 2017.
[6] 左正道,高郭平,程灵巧,等. 1979-2012年北极海冰运动学特征初步分析[J].海洋学报, 2016, 38(5):57-69.ZUO Z D, GAO G P, CHENG L Q, et al. Preliminary analysis of kinematic characteristics of Arctic sea ice from 1979 to 2012[J].Haiyang Xuebao, 2016, 38(5):57-69.
[7] 郝光华,赵杰臣,李春花,等. 2017年夏季北极中央航道海冰观测特征及海冰密集度遥感产品评估[J].海洋学报, 2018, 40(11):54-63.HAO G H, ZHAO J C, LI C H, et al. The sea ice observations and assessment of satellite sea-ice concentration along the Central arctic passage in summer 2017[J]. Haiyang Xuebao, 2018, 40(11):54-63.
[8] 王蔓蔓. 1979-2017年北极航道冰情变化研究[D].南京:南京大学, 2018.WANG M M. Research on sea ice condition of Arctic passage in1979-2017[D]. Nanjing:Nanjing University, 2018.
[9] 刘国宠.北极东北航道海冰时空变化分析与通航期预测[D].青岛:山东科技大学, 2022.LIU G C. Spatio-temporal variation analysis and navigation period prediction of sea ice in the northeast passage of the Arctic[D]. Qingdao:Shandong University of Science and Technology,2022.
[10] 陆海鸣. 2021年商船北极东北航道航行回顾及思考[J].世界海运, 2022, 45(1):1-5.LU H M. Review and Reflection on the 2021 merchant ship navigation in the northeast passage of the Arctic[J]. World Shipping, 2022, 45(1):1-5.
[11] 马龙,王加跃,刘星河,等.北极东北航道通航窗口研究[J].海洋预报, 2018, 35(1):52-59.MA L, WANG J Y, LIU X H, et al. Research in navigable windows of the northwest passage[J]. Marine Forecasts, 2018, 35(1):52-59.
[12] 顾小壮,王星东,王真真.基于逐日海冰密集度的北极东北航道通航性分析[J].河南科技, 2019, 38(13):134-135.GU X Z, WANG X D, WANG Z Z. Navigability analysis of northeast Arctic channel based on day-to-day sea ice density[J].Henan Science and Technology, 2019, 38(13):134-135.
[13] PANG X P, ZHANG C L, JI Q, et al. Analysis of sea ice conditions and navigability in the Arctic northeast passage during the summer from 2002-2021[J]. Geo-Spatial Information Science, 2023, 26(3):465-479.
[14] 张丽.北方海航道法律地位研究[D].重庆:西南政法大学,2018.ZHANG L. The study of the legal status of the northern sea route[D]. Chongqing:Southwest University of Political Science and Law, 2018.
[15] 王洛,赵越,刘建民,等.中国船舶首航东北航道及其展望[J].极地研究, 2014, 26(2):276-284.WANG L, ZHAO Y, LIU J M, et al. China's first trans-arctic voyage and related expectations[J]. Chinese Journal of Polar Research, 2014, 26(2):276-284.
[16] 黄睿,王常颖,李劲华,等.三种海冰密集度产品的北极海冰监测能力比较分析[J].极地研究, 2022, 34(4):471-484.HUANG R, WANG C Y, LI J H, et al. Comparative analyses of Arctic sea ice monitoring capability of three sea ice concentration products[J]. Chinese Journal of Polar Research, 2022, 34(4):471-484.
[17] 尹鹏,王常颖,杨俊钢.长时间序列北极海冰密集度遥感数据的比较评估[J].冰川冻土, 2020, 42(3):734-744.YIN P, WANG C Y, YANG J G. Comparison and assessment of long-time series sea ice concentration remote sensing datasets in the Arctic[J]. Journal of Glaciology and Geocryology, 2020, 42(3):734-744.
[18] HAO G H, SU J. A study on the dynamic tie points ASI algorithm in the Arctic Ocean[J]. Acta Oceanologica Sinica, 2015, 34(11):126-135.
[19] HAO H R, SU J, SHI Q, et al. Arctic sea ice concentration retrieval using the DT-ASI algorithm based on FY-3B/MWRI data[J]. Acta Oceanologica Sinica, 2021, 40(11):176-188.
[20] 梅安新.遥感导论[M].北京:高等教育出版社, 2001.MEI A X. An introduction to remote sensing[M]. Beijing:Higher Education Press, 2001.
[21] 张安定.遥感原理与应用题解[M].北京:科学出版社, 2016.ZHANG A D. Principle and application of remote sensing[M].Beijing:Science Press, 2016.
[22] 黄季夏,张天媛,曹云锋,等.北极海冰消融情景下东北航道通航性能演变分析[J].地理学报, 2021, 76(5):1051-1064.HUANG J X, ZHANG T Y, CAO Y F, et al. The evolution of navigation performance of northeast passage under the scenario of Arctic sea ice melting[J]. Acta Geographica Sinica, 2021, 76(5):1051-1064.
[23] 李航.统计学习方法[M].北京:清华大学出版社, 2012.LI H. Statistical learning methods[M]. Beijing:Tsinghua University Publishing House, 2012.
[24] 雷国本.决策理论与方法[M].成都:天地出版社, 2006.LEI G B. Decision-making theory and method[M]. Chengdu:Tiandi Press, 2006.
[25] 张婷婷.遥感技术概论[M].郑州:黄河水利出版社, 2011.ZHANG T T. Introduction to remote sensing technology[M].Zhengzhou:The Yellow River Water Conservancy Press, 2011.
[26] 苏远超,许若晴,高连如,等.基于深度学习的高光谱遥感图像混合像元分解研究综述[J].遥感学报, 2024, 28(1):1-19.SU Y C, XU R Q, GAO L R, et al. Development of deep learningbased hyperspectral remote sensing image unmixing[J]. National Remote Sensing Bulletin, 2024, 28(1):1-19.
[27] PEROVICH D K, NGHIEM Sn V, MARKUS T, et al. Seasonal evolution and interannual variability of the local solar energy absorbed by the Arctic sea ice-ocean system[J]. Journal of Geophysical Research:Oceans, 2007, 112(C03):C03005.
[28] 陆云波,王伦澈,牛自耕,等. 2000-2017年中国区域地表反照率变化及其影响因子[J].地理研究, 2022, 41(2):562-579.LU Y B, WANG L C, NIU Z G, et al. Variations of land surface albedo and its influencing factors in China from 2000 to 2017[J].Geographical Research, 2022, 41(2):562-579.
[29] CHOI Y S, HWANG J, OK J, et al. Effect of Arctic clouds on the ice-albedo feedback in midsummer[J]. International Journal of Climatology, 2020, 40(10):4707-4714.
[30] PEROVICH D K, LIGHT B, EICKEN H, et al. Increasing solar heating of the Arctic Ocean and adjacent seas, 1979-2005:attribution and role in the ice-albedo feedback[J]. Geophysical Research Letters, 2007, 34(19):L19505.
[31] YIN Q Z, WU Z P, BERGER A, et al. Insolation triggered abrupt weakening of Atlantic circulation at the end of interglacials[J].Science, 2021, 373(6558):1035-1040.
[32] NAGOVITSYN Y A. Specific features in the effect of solar activity on the earth's climate changes[J]. Geomagnetism and Aeronomy, 2014, 54(8):1010-1013.
[33] ARNDT S, NICOLAUS M. Seasonal cycle and long-term trend of solar energy fluxes through Arctic sea ice[J]. The Cryosphere,2014, 8(6):2219-2233.
[34] 索飞,乐红安,黄国平.基于AMSR-E海冰密集度北极海冰信息提取与分析[J].智库时代, 2019(32):220-221.SUO F, LE H A, HUANG G P. Arctic sea ice information extraction and analysis based on AMSR-E sea ice concentration[J]. Think Tank Era, 2019(32):220-221.
[35] 魏立新,邓小花,县彦宗,等. 2007与2008年夏季北极海冰变化特征及原因的对比分析[J].海洋预报, 2013, 30(2):1-7.WEI L X, DENG X H, XIAN Y Z, et al. Comparative analysis of Arctic sea ice variation in summer 2007 and 2008[J]. Marine Forecasts, 2013, 30(2):1-7.
[36] MATSOUKAS C, HATZIANASTASSIOU N, FOTIADI A, et al.The effect of Arctic sea-ice extent on the absorbed (net) solar flux at the surface, based on ISCCP-D2 cloud data for 1983-2007[J].Atmospheric Chemistry and Physics, 2010, 10(2):777-787.
[37] 李淑瑶,崔红艳. 1982-2001年与2002-2021年北极秋季海冰的时空变化及原因[J].海岸工程, 2022, 41(2):162-172.LI S Y, CUI H Y. The spatial-emporal variation of Arctic autumn sea ice and its impact factors in 1982-2001 and 2002-2021[J].Coastal Engineering, 2022, 41(2):162-172.
[38] SHEN Z L, DUAN A M, LI D L, et al. Quantifying the contribution of internal atmospheric drivers to near-term projection uncertainty in september Arctic sea ice[J]. Journal of Climate, 2022, 35(11):3427-3443.
[39] 王昀,李雪薇,王今菲,等.北极海冰厚度的热力学和动力学影响因素研究评述[J].极地研究, 2023, 35(1):124-138.WANG Y, LI X W, WANG J F, et al. Overview on the thermodynamic and dynamic factors influencing Arctic sea ice thickness[J]. Chinese Journal of Polar Research, 2023, 35(1):124-138.
[40] LIANG Y, BI H B, WANG Y H, et al. Role of atmospheric factors in forcing Arctic sea ice variability[J]. Acta Oceanologica Sinica,2020, 39(9):60-72.
[41] WANG L, ZHANG L J, YANG W F. The impact of concurrent variation of atmospheric meridional heat transport in western Baffen Bay and eastern Greenland on summer Arctic sea ice[J].Acta Oceanologica Sinica, 2020, 39(8):14-23.
[42] LIANG H J, SU J. Variability in sea ice melt onset in the Arctic northeast passage:seesaw of the Laptev Sea and the East Siberian Sea[J]. Journal of Geophysical Research:Oceans, 2021, 126(10):e2020JC016985.
[43] LIANG H J, ZHOU W. Dynamic and thermodynamic processes related to sea-ice surface melt advance in the Laptev Sea and East Siberian Sea[J]. The Cryosphere, 2024, 18(8):3559-3569.
[44] 桂大伟.北极海冰输运以及冰场形变特性研究[D].武汉:武汉大学, 2020.GUI D W. Characteristics of sea ice motion and deformation in the Arctic using sea ice motion product[D]. Wuhan:Wuhan University, 2020.
[45] GUI D W, PANG X P, LEI R B, et al. Changes in sea ice kinematics in the Arctic outflow region and their associations with Arctic northeast passage accessibility[J]. Acta Oceanologica Sinica, 2019, 38(8):101-110.
服务与反馈:
文章下载】【发表评论】【查看评论】【加入收藏
 
 海洋预报编辑部 地址:北京海淀大慧寺路8号 电话:010-62105776
投稿网址:http://www.hyyb.org.cn
邮箱:bjb@nmefc.cn
本系统由北京博渊星辰网络科技有限公司设计开发 技术支持电话:010-63361626