首页期刊介绍通知公告编 委 会投稿须知电子期刊广告合作联系我们在线留言
 
海洋温盐度资料多变量同化研究进展
作者:张春玲1 3  李宏1  许建平1 2  王振峰4 
单位:1. 国家海洋局第二海洋研究所, 浙江杭州 310012;
2. 卫星海洋环境动力学国家重点实验室, 浙江杭州 310012;
3. 中国海洋大学海洋环境学院, 山东青岛 266003;
4. 东海舰队司令部海洋水文气象中心, 浙江宁波 312122
关键词:海洋资料同化 多变量调整 Argo资料 网格化 海洋模式 
分类号:P717
出版年·卷·期(页码):2013·30·第一期(86-92)
摘要:
早期海洋资料同化仅考虑温度的调整而忽略盐度的变化,这往往会带来虚假信息,可能导致密度场被严重恶化,同化后的结果甚至比没有同化任何观测资料时还要差。为了解决这个问题,海洋资料同化中的一些温、盐度多变量调整方案便被提出来了。本文对广泛应用于多变量分析的资料同化方法及不同温、盐度多变量调整方案进行了系统的回顾,对它们的优缺点进行了分析与讨论,并指出了不同调整方案的适用条件及应用现状,最后对Argo资料在海洋资料同化中的重要性及今后的研究重点进行了探讨。
Early ocean data assimilation only considered temperature adjustment and ignored the salinity changes, which often brings false information and lead to density field deteriorated seriously. The assimilation results were even worse than that without assimilating any observation data. In order to solve this problem, some multivariable assimilation schemes for temperature and salinity were brought up. In this paper, we reviewed the data assimilation methods widely used in multivariate analysis and different temperature and salinity adjustment schemes, discussed the advantages and disadvantages of them, and pointed out their application situation respectively. Finally, the importance of Argo data and the key research of future data assimilation were discussed in this paper.
参考文献:
[1] Maes C. A note on the vertical scales of temperature and salinity and their signature in dynamic height in the western Pacific Ocean: Implications for data assimilation[J]. J. Geophys. Res, 1999, 104: 15575-15585.
[2] Ricci S A, Weaver J, Vialard, Rogel P. Incorporating State dependent temperature salinity constraints in the background error covariance of variational ocean data assimilation. Mon[J]. Wea. Rev. 2005, 133: 317-338.
[3] Cooper N S. The effect of salinity in tropical ocean models[J]. J. Phys.Oceanogr, 1988, 18: 1333-1347.
[4] Woodgate R A. Can we assimilate temperature data alone into a full equation of state model[J]. Ocean Model, 1997, 114: 4-5.
[5] Vialard J, Delecluse P. An OGCM study for the TOGA Decade. Part I: Role of salinity in the physics of the western Pacific fresh pool[J]. J Phys.Oceanogr, 1998a, 28: 1071-1088.
[6] Vialard J, Delecluse P. An OGCM study for the TOGA decade. Part Ⅱ: Barrier layer formation and variability[J]. J. Phys. Oceanogr, 1998b, 28: 1089-1106.
[7] Troccoli A, Coauthors. Salinity adjustments in the presence of temperature data assimilation[J]. Mon. Wea. Rev, 2002, 130: 89-102.
[8] Ji M, Reynolds R W, Behringer D. Use of TOPEX/Poseidon sea level data for ocean analysis and ENSO prediction: Some early results[J]. J Clim 2000, 13: 216-231.
[9] Gandin L S. Objective analysis of meteorological fields[M]. Gidromet: Leningrad, 1963. 1-242.
[10] Kalnay E. Atmospheric Modeling, Data Assimilation and Predictability[M]. Cambridge: Cambridge University Press, 2003. 1-343.
[11] Evensen G. Sequential data assimilation with a nonlinear quasi-geostrophic model using Monte Carlo methods to forecast error statistics[J]. J Geophys Res, 1994, 99: 10143-10162.
[12] Kalman R E, Bucy R. New results in linear filtering and predication theory[J]. Journal of Basic Engineering, 1961, 83: 95-108.
[13] Houtekamer P L, Mitchell H L. Ensemble Kalman filtering[J]. Meteorol. Soc, 2005, 131: 3269-3289.
[14] Evensen G. The Ensemble Kalman Filter: theoretical formulation and practical implementation[J]. Ocean Dyn., 2003, 53: 343-367.
[15] Oke P, Brassington G B, et al. The bluelink ocean data assimilation system (BODAS)[J]. Ocean Model, 2008, 21: 46-70.
[16] Counillon F, Bertino L. Ensemble Optimal Interpolation: multivariate properties in the Gulf of Mexico. Tellus -A, 2009, 61: 296-308.
[17] Oke P, Brassington G B, et al. Ocean data assimilation: a case for ensemble optimal interpolation[J]. Australian Meteorological and Oceanographic Journal, 2010, 59: 67-76.
[18] Fu W, Zhu J, Yan C. A comparison between 3DVAR and EnOI techniques for satellite altimetry data assimilation[J]. Ocean Model, 2009, 26: 206-16.
[19] Wan L, Bertino L, Zhu J. Assimilating Altimetry Data into a HYCOM Model of the Pacific: Ensemble Optimal Interpolation versus Ensemble Kalman Filter[J]. Journal of Atmospheric and Oceanic Technology, 2010, 27: 753-765.
[20] Bertino L, Lisaeter K A. The TOPAZ monitoring and prediction system for the Atlantic and Arctic Oceans[J]. Operat. Oceanogr, 2008, 2: 15-18.
[21] Xie J, Zhu J. Ensemble optimal interpolation schemes for assimilating Argo profiles into a hybrid coordinate ocean model[J]. Ocean Model, 2010, 33: 283-298.
[22] Yan Changxiang, Zhu Jiang, Xie Jiping. An ocean reanalysis system for the joining area of Asia and Indian-Pacific ocean[J]. Atmospheric and Oceanic Science Letters, 2010, 3(2): 81-86
[23] 朱江, 闫长香. 三维变分资料同化中的非线性平衡约束[J].中国 科学D辑:地球科学, 2005, 35(12): 1187-1192.
[24] 高山, 王凡, 李明. 中尺度涡的高度计资料同化模拟[J].中国科 学D辑:地球科学, 2007, 37(12): 1669-1678.
[25] Stommel H M. Note on the use of T-S correlation for dynamic height anomaly computation[J].J Mar Res, 1947, 6: 85-92.
[26] Flierl G R. Correcting expendable bathythermograph (XBT) data for salinity effects to compute dynamic heights in Gulf Stream rings[J]. Deep-Sea Res I, 1978, 25: 129-134.
[27] Kessler W S, Taft B A. Dynamic heights and zonal geostrophic transports in the central tropical Pacific during 1979-84[J]. J. Phys. Oceanogr, 1987, 17: 97-122.
[28] Emery W J, Dewar L J. Mean temperature-salinity, salinity-depth, and temperature-depth curves in the North Atlantic and North Pacific[J]. Progress in Oceanography, 1982, 16: 219-305.
[29] Maes C, Behringer D. Using Satellite-derived Sea Level and Temperature Profiles for Determining the Salinity Variability: A New Approach[J]. J. Geophys Res, 2000b, 105: 8537-8547.
[30] Reynolds R W, Ji M, Leetmaa A. Use of salinity to improve ocean modeling[J]. Phys Chem Earth, 1998, 23: 545-555.
[31] Han G, Zhu J, Zhou G. Salinity estimation using the T-S relation in the context of variational data assimilation[J]. J Geophys Res, 2004, 109, C03018, doi:10. 1029/2003 JC 001781.
[32] 韩桂军, 李威, 张学峰, 等. 中国近海及邻近海域海洋再分析技 术报告[R]. 天津:国家海洋信息中心, 2009, 1-6.
[33] Maes C, Behringer D, Reynolds R W. Retrospective analysis of the salinity variability in the western Tropical Pacific Ocean using an indirect minimization approach[J]. J. Atmos Ocean Technol, 2000a, 17:512—524.
[34] Fujii Y, Kamachi M. A reconstruction of observed profiles in the Sea East of Japan using vertical coupled temperature-salinity EOF modes[J]. J Oceanogr, 2003, 59: 173-186.
[35] Bellucci A, Masina S, DiPietro P, Navarra A. Using temperature-salinity relations in a global ocean implementation of a multivariate data assimilation scheme[J]. Mon. Weather Rev. 2007, 135: 3785-3807.
[36] Vossepoel F, Reynolds R W, Miller L. The use of sea level observations to estimate salinity variability in the tropical Pacific[J]. J Atmos Oceanic Technol, 1999, 16: 1400-1414.
[37] Vossepoel F, Behringer D. Impact of sea level assimilation on salinity variability in the western equatorial Pacific[J]. J Phys Oceanogr, 2000, 30: 1706-1721.
[38] Yan Changxiang, Jiang Zhu, Rongfeng Li, Guangqing Zhou. Roles of vertical correlations of background error and T-S relations in estimation of temperature and salinity profiles from sea surface dynamic height[J]. J. Geophys. Res., 2004, 109, C08010, doi:10.1029/2003JC0022 24.
[39] Derber J, Bouttier F. A reformulation of the background error covariance in ECMWF global data assimilation[J]. Tellus, 1999, 51: 195-221.
[40] 朱江, 周广庆, 闫长香, 等. 一个三维变分海洋资料同化系统的 设计和初步应用[J]. 中国科学D 辑: 地球科学, 2007, 37(2): 261-271.
[41] 许建平, 刘增宏. 中国Argo 大洋观测网试验[M].北京:气象出 版社, 2007:4-5.
[42] GHRSST Porject Office. The GHRSST-PP Development and Im-plementation Plan[R]. UK: Met Office, 2003. 1-6.
服务与反馈:
文章下载】【发表评论】【查看评论】【加入收藏
 
 海洋预报编辑部 地址:北京海淀大慧寺路8号 电话:010-62105776
投稿网址:http://www.hyyb.org.cn
邮箱:bjb@nmefc.cn
本系统由北京博渊星辰网络科技有限公司设计开发 技术支持电话:010-63361626