南半球微波遥感SST与Argo浮标NST的异同分析 |
作者:卢少磊1 许建平1 2 刘增宏1 2 |
单位:1. 国家海洋局第二海洋研究所, 浙江杭州 310012; 2. 卫星海洋环境动力学国家重点实验室, 国家海洋局第二海洋研究所, 浙江杭州 310012 |
关键词:微波遥感 Argo 海表温度 近表层温度 南半球 |
分类号:P731.11 |
|
出版年·卷·期(页码):2014·31·第一期(1-8) |
摘要:
|
利用Argo剖面浮标观测得到的近表层温度数据(NST),与两种卫星微波传感器(TMI和AMSRE)反演的海表温度(SST)进行较为系统的对比分析。结果表明,在南半球海域SST与NST虽存在显著的线性关系,但两者之间的差异(△T)还是十分明显的。无论是TMI还是AMSR-E反演的SST,与ArgoNST相比,△T均存在昼夜和季节变化:△T夜间较白天大,冬季达到最大,而春季则是最小。此外,△T还表现出沿纬线呈带状分布的特征。进一步研究表明,造成南半球海域SST与NST的差异主要由风速所致,且与海面流速和大气水汽含量也有一定的关系。为此,建议改进卫星遥感SST反演方法,缩小其与实测NST之间的差异,从而为南半球乃至全球海域多源SST融合提供更加可靠的统计学依据。 |
The microwave remote sensing sea surface temperature (SST) derived from TMI and AMSR-E and Argo near-surface temperature (NST) data in the Southern Hemisphere waters are compared. The result showed that the satellite SST and NST had remarkable linear relationship, but their difference (△T) was obvious. Whether derived from TMI or AMSR-E, △T showed diurnal and seasonal variation characteristics: the △T at night was greater than that at daytime, and the △T is maxmum in winter and is minimum in spring. Besides, the △T showed the characteristics of zonal distribution versus latitude. Further studies showed that, the difference between remote sensing SST and NST was resulted from the wind speed, and was also affected by the ocean surface velocity and water vapor. Therefore, it was necessary to improve the inversion method of satellite remote sensing SST to reduce the difference with the measured NST, and to provide a more reliable statistical basis for the merging of multiple SST in the Southern Hemisphere and even in the global ocean. |
参考文献:
|
[1] Donlon C J, Casey K S, Robinson I S, et al. The GODAE highresolution sea surface temperature pilot project[J].Oceanography, 2009, 22 (3): 34-45. [2] Alvera A, Troupin C, Brath A, et al. Comparison between satellite and in situ sea surface temperature data in the Western Mediterranean Sea[J]. Ocean Dynamics, 2011, 61: 767-778. [3] Castro S L, Wick G A, Jackson D L, et al. Error characterization of infrared and microwave satellite sea surface temperature products for merging and analysis[J]. Journal of Geophysical Research, 2008, 113(C03010), doi:10.1029/2006JC003829. [4] Guan L, Kawamura H. SST availabilities of satellite infrared and microwave measurement[J]. Journal of Oceanography, 2003, 59 (2): 201-209. [5] Ricciardulli L,Wentz F J. Uncertainties in sea surface temperature retrievals from space Comparison of microwave and infrared observations from TRMM[J]. Journal of Geophysical Research, 2004, 109(C12013), doi:10.1029/2003JC002247. [6] Kim E J, Kang S K, Jang S T, et al. Satellite-Derived SST Validation based on In-Situ Data during Summer in the East China Sea and Western North Pacific[J]. Ocean Science Journal, 2010, 45 (3): 159-170. [7] 高郭平,钱成春, 鲍献文,等.中国东部海域卫星遥感PFSST与现 场观测资料的差异[J]. 海洋学报, 2001, 23(4): 121-126. [8] 孙凤琴, 张彩云, 商少平, 等. 西北太平洋部分海域AVHRR、 TMI 与MODIS 遥感海表层温度的初步验证[J]. 厦门大学学 报: 自然科学版, 2007, 46(S1): 1-5. [9] 李明, 张占海, 刘骥平, 等. 利用南极走航观测评估卫星遥感海 表面温度[J]. 海洋技术, 2008, 30(3): 16-27. [10] 李明, 刘骥平, 张占海, 等. 利用南大洋漂流浮标数据评估AMSR-E SST[J]. 海洋学报, 2010, 32(6): 47-55. [11] Dong S F, Gille S T, Sprintall J, et al. Validation of the Advanced Microwave Scanning Radiometer for the Earth Observing System (AMSR-E)sea surface temperature in the Southern Ocean[J]. Journal of Geophysical Research, 2006, 111(C04002), doi:10.1029/ 2005JC002934. [12] DonlonCJ, NightingaleT, SheasbyT, et al. Implications of the oceanic thermal skin temperature deviation at high wind speed[J]. Geophysical Research Letters, 1999, 26(16): 2505-2508. [13] Gentemann C L, Wears F J, Mears C A, et al. In situ validation of Tropical Rainfall Measuring Mission microwave sea surface temperature [J]. Journal of Geophysical Research, 2004, 109, CD4201, doi:10.1029/2003JC002092. [14] Hosoda K.A Review of Satellite-Based Microwave Observations of Sea Surface Temperatures [J]. Journal of Oceanography, 2010, 66: 439-473. [15] 许建平, 刘增宏, 孙朝辉, 等. 全球Argo 实时海洋观测网全面 建成[J]. 海洋技术, 2008, 27(1): 68-70. [16] Martin M, Dash P, Ignatov A, et al. Group for High Resolution Sea Surface temperature (GHRSST) analysis fields inter-comparisons. Part 1: A GHRSST multi-product ensemble(GMPE) [J]. Deep-Sea Research II, 2012, doi: 10.1016/j.dsr2.2012.04.013. [17] Udaya T V S, Rahmans H, Pavan i D, et al. Comparison of AMSR-E and TMI sea surface temperature with Argo near-surface temperature over the Indian Ocean[J]. International Journal of Remote Sensing, 2009, 30 (10): 2669-2684. [18] Murphy D, Riser S, Larson N, et al. Measurement of salinity and temperature profiles through the sea surface on Argo floats[R]. Poster Presentation 4th Aquarius/SAC-D science workshop, Puerto Madryn, Argentina, 3-5 December 2008. [19] Larson N L, Janzen C D, Murphy D J. STS: An instrument for extending Argo temperature and salinity measurements through the sea surface[R]. Poster Presentation 2008 Ocean Sciences Meeting, Orlando Florida, 2-7 March 2008. [20] Donlon C J, Minnett P J, Gentemann C, et al. Towards Improves Validation of Satellite Sea Surface Temperature Measurements for Climate Research[J]. Journal of Climate, 2002, 15: 353-369. [21] Merchant C J, Filipiak P L, BORGNE P L. Diurnal warm-layer events in the western Mediterranean and European shelf seas[J]. Geophysical Research Letters, 2008, 35, L04601, doi:10.1029/ 2007GL033071. [22] Fairall C W, Bradley E F, Godfrey J S, et al. Cool-skin and warmlayer effects on sea surface temperature[J]. Journal of Geophysical Research, 1996, 101: 1295-1308. [23] Verdy A, Marshall J, Czaja A. Sea Surface Temperature Variability along the Path of the Antarctic Circumpolar Current[J]. Journal of Physical Oceanography, 2006, 36: 1317-1331. [24] Nowlin W D, Klinck J M. The physics of the Antarctic Circumpolar Current[J]. Reviews of Geophysics, 1986, 24(3): 469-491. [25] Talley L D, Pickard G L, Emery W J, et al. Descriptive Physical Oceanography[M]. Amsterdam: Elsevier, 2011: 246-247. |
服务与反馈:
|
【文章下载】【发表评论】【查看评论】【加入收藏】
|
|
|