基于LAGFD-WAM海浪数值模式的海南万宁近海波浪能资源评估 |
作者:李泽文1 周强1 杨永增2 |
单位:1. 华能新能源股份有限公司, 北京100036; 2. 国家海洋局第一海洋研究所, 山东青岛266061 |
关键词:LAGFD-WAM海浪模式 波浪能 资源评估 万宁 |
分类号:P743.2 |
|
出版年·卷·期(页码):2014·31·第五期(13-19) |
摘要:
|
利用1991—2010 年的NCEP再分析风场驱动LAGFD-WAM海浪数值模式, 通过数值后报方法, 对海南万宁近海海域近20 年的波浪场进行了逐时数值模拟, 数值模拟结果和实测结果对比的一致性良好。在数值后报数据的基础上计算了万宁近海波浪能流密度和能流密度变异系数, 并对其年内变化特点、区域分布特征和稳定性进行了分析。万宁近海年均波浪能流密度3—10 kW/m, 属于波浪能资源可利用区和较丰富区。年内各月月均能流密度差别较大, 12 月波浪能资源最好, 5 月波浪能资源最差。秋季(9—11 月)和冬季(12—2 月)月均波浪能流密度分别为5—24 kW/m和6—29 kW/m, 春季(3—5 月)和夏季(6—8 月)分别为3—7 kW/m和1—6 kW/m。地形对波浪能量的辐聚作用明显, 受岬角、岛屿、海底陡坡等因素影响, 大洲岛、白鞍岛周边、大花角附近及白鞍岛以北部分近岸区域形成波浪能富集区。除9 月外, 年内其他时段能流密度变异系数都在2.8以下, 9月能流密度变异系数在3.0—5.9之间。 |
The third generation spectral wave model, LAGFD-WAM is adopted for the long term hindcasting data for the adjacent sea of Wanning City. The model is driven by the NCEP reanalysis wind data from 1991 to 2010. The model result agrees well with the observational data. Based on the hindcasting data, wave energy density and coefficient of variation (COV) are calculated and the temporal and spatial distributions of the wave are analyzed. This result shows that wave energy is rich in the adjacent sea area of Wanning City. Annual average wave energy flux density is in the range of 3—10 kW/m. The difference of monthly wave energy flux density is great. The richest wave energy occurs in December, and the poorest in May. Wave energy flux density in autumn and winter is 5—24 kW/m and 6—29 kW/m respectively. Wave energy flux density in spring and summer is 3—7 kW/m and 1—6 kW/m respectively. On account of the existence of special sea terrain of islands, headland, and steep seabed, the wave energy in the adjacent area of Dazhou island and Baian island, Dahuajiao headland, and coastal region to the north of Baian island is rich enough. The wave energy flux density variation coefficient is 3.0—5.9 in September, and it is less than 2.8 in other months. |
参考文献:
|
[1] Implementing agreement on ocean energy systems (IEA-OES), annual report of international energy agency[R]. Paris, International Energy Agency, 2007. [2] 滕吉文, 张永谦, 阮小敏. 发展可再生能源和新能源与必须深层 次思考的几个科学问题—非化石能源发展的必由之路[J]. 地球 物理学进展, 2010, 25(4): 1115-1152. [3] 游亚戈, 李伟, 刘伟民, 等. 海洋能发电技术的发展现状与前景[J]. 电力系统自动化, 2010, 34(14): 1-12. [4] Retzler C. Measurements of the slow drift dynamics of a model Pelamis wave energy converter[J]. Renewable Energy,2006, 31(2): 257- 269. [5] Aoun N S, Harajli H A, Queffeulou P. Preliminary appraisal of wave power prospects in Lebanon[J]. Renewable Energy, 2013, 53 (5): 165-173. [6] Tsai C P, Hwang C H, Hwa C, et al. Study on the wave climate variation to the renewable wave energy assessment[J]. Renewable Energy, 2012, 38(1): 50-61. [7] Eugen R, Guedes S C. Wave energy pattern around the Madeira Islands[J]. Energy, 45(1): 771-785. [8] Cotton P D, Carter D J T. Cross calibration of TOPEX, ERS-1 and Geosat wave heights[J]. Journal of Geophysical Research, 1994, 99 (12): 25025-25033. [9] Jesus P, Jeison S, Luigi C. Wave energy resources: Wave climate and exploitation[J]. Renewable Energy, 2012, 57(2): 594-605. [10] 袁业立, 华锋, 潘增弟, 等. 耗散源函数及LAGFD-WAM海浪数 值模式的改进[J]. 海洋与湖沼, 1993, (4): 1-7. [11] 江志辉. 热带气旋模型风场改进及其在LAGFDWAM中的应用[D]. 国家海洋局第一海洋研究所, 2007. [12] 杨春成. WAM模式──第三代海浪数值模式(一)[J]. 气象科 技, 1985, 4: 37-50. [13] 訚耀保, Tomiji Watabe. 海洋波浪能量综合利用[M]. 上海科学 技术出版社, 2011: 192. [14] Hagerman G. Guidelines for preliminary estima- tion of power production by offshore wave energy devices[EB/OL]. Palo Alto: Electric Power Research Institute, 2003. [2003 ? 06 ? 22]. http:// www.epri.com/oceanenergy/. [15] 郑崇伟, 潘静, 田妍妍, 等. 全球海域风浪、涌浪、混合浪波候图 集[M]. 北京: 海洋出版社, 2012:1-3. [16] 郑崇伟, 林刚, 孙岩, 等. 近22 年南海波浪能资源模拟研究[J]. 热带海洋学报, 2012, 31(6): 13-19. [17] 郑崇伟, 苏勤, 刘铁军. 1988-2010 年中国海域波浪能资源模拟 及优势区域划分[J]. 海洋学报, 2013, 35(3): 104-111. [18] 谢辛, 李燕初, 许德伟, 等. 利用TOPEX卫星高度计资料分析台 湾岛周边海域巨浪和大风特征[J]. 海洋学报, 2009, 31(5): 1-9. [19] Iglesias G, Carballo R. Wave energy potential along the Death Coast (Spain)[J]. Energy, 2009, 34(11): 1963-1975. [20] 李靖, 周林, 郑崇伟, 等. 台湾海峡及其邻近海域波浪能资源评 估[C]. 中国可再生能源学会2011年学术年会论文集, 2011. |
服务与反馈:
|
【文章下载】【发表评论】【查看评论】【加入收藏】
|
|
|