首页期刊介绍通知公告编 委 会投稿须知电子期刊广告合作联系我们在线留言
 
四维变分同化技术在风暴潮数值模拟中的应用
作者:王宗辰1  于福江1 2  原野1 2 
单位:1. 国家海洋环境预报中心, 北京100081;
2. 国家海洋局海洋灾害预报技术研究重点实验室, 北京100081
关键词:区域海洋模式ROMS 四维变分同化 风暴潮数值模拟 最优预报初始场 
分类号:P731.23
出版年·卷·期(页码):2015·32·第一期(1-9)
摘要:
利用区域海洋模式ROMS(Regional Ocean Modelling System)及其四维变分同化模块, 建立了具有资料同化能力的东中国海风暴潮数值模式, 通过将海洋站水位观测资料同化到风暴潮模式中, 提高了模式对风暴潮的模拟精度。四维变分同化技术能够在整个同化时间窗口保持动力协调, 使模拟结果在该时间窗口内最大程度的靠近观测, 同时, 得到了最优预报初始场。利用该模式, 对两次温带风暴潮过程进行了数值模拟, 结果表明:在同化窗口内, 同化对模拟精度有明显的提高;结束同化之后, 得到的最优预报初始场对临近预报精度也有一定提高。
Base on Regional Ocean Modeling System(ROMS) with four-dimensional variational (4D-Var) data assimilation modules, a model is established for storm surge simulation in the East China Sea, and the deterministic model output is corrected by assimilating the available tidal gauge station data. The 4D-Var technique is able to compensate for the errors between modeled outputs and observations by containing dynamically consistent and persistent during a period of time(also called assimilation window), and the optimal initial condition for forecasting is obtained. Two applications on extra tropical storm surges that occurred in Bohai are performed by the model. The results show that the procedure is capable of strongly improving simulation accuracy, and the optimal initial condition effectively improves the forecasting accuracy in a short period.
参考文献:
[1] 于福江, 张占海, 林一骅. 一个稳态Kalman 滤波风暴潮数值预报 模式[J]. 海洋学报, 2002, 24(5): 26-35.
[2] Heemink A W. Storm surge prediction using Kalman filtering[D]. Twente: Twente University of Technology, 1986.
[3] Heemink A W, Mouthaan E E A, Roest M R T, et al. Inverse 3D shallow water flow modeling of the continental shelf [J]. Continental Shelf Research, 2002, 22(3): 465-484.
[4] Sorensen J V T, Madsen H. Efficient Kalman filter techniques for the assimilation of tide gauge data in three-dimensional modeling of the North Sea and Baltic Sea system[J]. Journal of Geophysical Research, 2004, 109(C3), doi: 10.1029/2003JC002144.
[5] Butler T, Altaf M U, Dawson C, et al. Data Assimilation within the Advanced Circulation (ADCIRC) Modeling Framework for Hurricane Storm Surge Forecasting[J]. Monthly Weather Review, 2012, 140(7): 2215-2231.
[6] Zhang A J, Parker B B, Wei E. Assimilation of water level data into a coastal hydrodynamic model by an adjoint optimal technique[J]. Continental Shelf Research, 2002, 22(14): 1909-1934.
[7] Zhang A, Wei E, Parker B B. Optimal estimation of tidal open boundary conditions using predicted tides and adjoint data assimilation technique[J]. Continental Shelf Research, 2003, 23 (11-13): 1055-1070.
[8] Peng S Q, Xie L. Effect of determining initial conditions by four-dimensional variational data assimilation on storm surge forecasting[J]. Ocean Modelling, 2006, 14(1-2): 1-18.
[9] Peng S Q, Xie L, Pietrafesa L J. Correcting the errors in the initial conditions and wind stress in storm surge simulation using an adjoint optimal technique[J]. Ocean Modelling, 2007, 18(3-4): 175-193.
[10] Lionello P, Sanna A, Elvini E, et al. A data assimilation procedure for operational prediction of storm surge in the northern Adriatic Sea[J]. Continental Shelf Research, 2006, 26(4): 539-553.
[11] Sasaki Y. Some basic formalisms in numerical variational analysis[J]. MonthlyWeather Review, 1970, 98(12): 875-883.
[12] Le Dimet F X, Talagrand O. Variational algorithms for analysis and assimilation of meteorological observations: theoretical aspects[J]. Tellus A, 1986, 38(2): 97-110.
[13] You S H, Lee W-J, Moon K S. Comparison of storm surge tide predictions between a 2D operational forecasting system operational forecast system, RTSM and ROMS[J]. Ocean Dynamics, 2010, 60(2): 443-459.
[14] Li M, Zhong L J, Boicourt W C, et al. Hurricane-induced storm surges, currents and destratification in a semi-enclosed bay[J]. Geophysical Research Letters, 2006, 33(2): L02604. doi: 10.1029/2005GL024992
[15] Wang S Y, McGrath R, Hanafin J, et al. The impact of climate change on storm surges over Irish waters[J]. Ocean Modelling, 2008, 25(1-2): 83-94.
[16] Powell B S, Arango H G, Moore A M, et al. 4DVAR data assimilation in the Intra-Americas Sea with the Regional Ocean Modeling System (ROMS) [J]. Ocean Modelling, 2008, 25(3-4): 130-145.
[17] Powell B S, Moore A M. Estimating the 4DVAR analysis error of GODAE products[J]. Ocean Dynamics, 2009, 59(1): 121-138.
[18] Broquet G, Edwards C A, Moore A M, et al. Application of 4D-variational data assimilation to the California Current System[J]. Dynamics of Atmospheres and Oceans, 2009, 48(1-3): 69-92.
[19] Broquet G, Moore A M, Arango H G, et al. Ocean state and surface forcing correction using the ROMS-IS4DVAR data assimilation system[J]. Mercator Ocean Quarterly Newsletter, 2009, 34: 5-13.
[20] Broquet G, Moore A M, Arango H G, et al. Corrections to ocean surface forcing in the California Current System using 4D-variational data assimilation[J]. Ocean Modelling, 2011, 36 (1-2): 116-132.
[21] Shchepetkin A F, McWilliams J C. A method for computing horizontal pressure-gradient force in an oceanic model with a nonaligned vertical grid[J]. Journal of Geophysical Research, 2003, 108(C3), doi: 10.1029/2001JC001047
[22] Shchepetkin A F, McWilliams J C. The regional oceanic modeling system (ROMS): a split explicit, free-surface, topographyfollowing-coordinate oceanic model [J]. Ocean Modelling, 2005, 9 (4): 347-404.
[23] Haidvogel D B, Arango H, Budgell W P, et al. Ocean forecasting in terrain-following coordinates: formulation and skill assessment of the Regional Ocean Modeling System[J]. Journal of Computational Physics, 2008, 227(7): 3595-3624.
[24] Large W G, Pond S. Open ocean momentum flux measurements in moderate to strong winds[J]. Journal of Physical Oceanography, 1981, 11(3): 324-336.
[25] Courtier P, Thépaut J-N, Hollingsworth A. A strategy for operational implementation of 4D-Var, using an incremental approach[J]. Quarterly Journal of the Royal Meteorological Society, 1994, 120(519): 1367-1387.
[26] Fisher M. Minimization algorithms for variational data assimilation[R]//Proceedings of ECMWF Seminar Recent Developments in Numerical Methods for Atmospheric Modelling. U.K.: ECMWF Publication, 1998, 364-385.
[27] Tshimanga J. On a class of limited memory preconditioners for large-scale nonlinear least-squares problems[D]. Namur, Belgium: Facultes Universitaires Notre-Dame de la Paix, 2007.
[28] Tshimanga J, Gratton S, Weaver A T, et al. Limited-memory preconditioners with application to incremental variational data assimilation[J]. Quarterly Journal of the Royal Meteorological Society, 2008, 134(632): 751-769.
[29] Parrish D F, Derber J C. The national meteorological center's spectral statistical-interpolation analysis system[J]. Monthly Weather Review, 1992, 120(8): 1747-1763.
[30] Pawlowicz R, Beardsley B, Lentz S. Classical tidal harmonic analysis including error estimates in MATLAB using T_TIDE[J]. Computers and Geosciences, 2002, 28(8): 929-937. Computers and Geosciences, 2002, 28(8): 929-937.
服务与反馈:
文章下载】【发表评论】【查看评论】【加入收藏
 
 海洋预报编辑部 地址:北京海淀大慧寺路8号 电话:010-62105776
投稿网址:http://www.hyyb.org.cn
邮箱:bjb@nmefc.cn
本系统由北京博渊星辰网络科技有限公司设计开发 技术支持电话:010-63361626