摘要:
|
基于CCMP卫星风场数据和NECP-DOE再分析数据两者典型空间模态近20a的长期统计关系,构建了中国海域海表面风的统计降尺度模型。降尺度模型交叉验证结果表明:模拟与观测两者风速在空间分布和变化趋势上均具有很好的吻合性,风速空间分布的相关性(R)可达到0.98以上,风速变化趋势的相关性(R)可达0.89以上。模型预测风速的均方根误差(RMSE)和绝对误差(AE),在绝大多数海区均低于0.25m/s和0.30m/s,相对误差(RE)<-5%或>5%的海区面积仅约占全海域面积的5%左右。从空间上而言,降尺度模型的模拟误差大值区多发生在陆域附近的近海区,主要原因是近海区影响风场的中小尺度天气因子众多。 |
Based on long-term statistical relationship of typical spatial modes derived from CCMP wind data and NCEP-DOE reanalysis data, a statistical downscaling model of sea surface wind over China seas is constructed. The results of cross-validation indicate that the simulated wind speed agrees well with the wind speed from CCMP observation, both in spatial pattern and in annual variation. The correlation coefficient (R) of model simulating and CCMP observation is above 0.98 for wind speed spatial pattern, and higher than 0.89 for wind speed annual variation. Moreover, simulating errors of the statistical downscaling model are very low. In most of sea areas, RMSE of wind speed is lower than 0.25 m/s and AE is lower than 0.30 m/s. Only in about 5% sea areas, its RE is higher than 5% or lower than -5%. The errors spatial patterns show that large errors often occur in some offshore areas, because the offshore winds are affected by many factors that come from active local weather systems in meso-scale and small-scale. |
参考文献:
|
[1] 范泽孟, 岳天祥, 陈传法, 等. 中国降水未来情景的降尺度模拟[J]. 地理研究, 2012, 31(12): 2283-2291. [2] 陈威霖, 江志红, 黄强. 基于统计降尺度模型的江淮流域极端气 候的模拟与预估[J]. 大气科学学报, 2012, 35(5): 578-590. [3] 成爱芳, 冯起, 张健恺, 等. 未来气候情景下气候变化响应过程研 究综述[J]. 地理科学, 2015, 35(1): 84-90. [4] 朱宏伟, 杨森, 赵旭喆, 等. 区域气候变化统计降尺度研究进展[J]. 生态学报, 2011, 31(9): 2602-2609. [5] 陈华, 郭家力, 郭生练, 等. 统计降尺度方法及其评价指标比较研 究[J]. 水利学报, 2012, 43(8): 891-897. [6] Sailor D J, Li X S. A semiempirical downscaling approach for predicting regional temperature impacts associated with climatic change[J]. Journal of Climate, 1999, 12(1): 103-114. [7] Murphy J. Predictions of climate change over Europe using statistical and dynamical downscaling techniques[J]. International Journal of Climatology, 2000, 20(5): 489-501. [8] Mpelasoka F S, Mullan A B, Heerdegen R G. New Zealand climate change information derived by multivariate statistical and artificial neural networks approaches[J]. International Journal of Climatology, 2001, 21(11): 1415-1433. [9] Bárdossy A, Stehlík J, Caspary H J. Automated objective classification of daily circulation patterns for precipitation and temperature downscaling based on optimized fuzzy rules[J]. Climate Research, 2002, 23: 11-22. [10] Goodess C M, Hall J, Best M, et al. Climate scenarios and decision making under uncertainty[J]. Built Environment, 2007, 33(1): 10-30. [11] 范丽军. 统计降尺度方法集合预估华东气温的初步研究[J]. 高 原气象, 2010, 29(2): 392-402. [12] 崔妍, 江志红, 陈威霖. 典型相关分析方法对21 世纪江淮流域极 端降水的预估试验[J]. 气候变化研究进展, 2010, 6(6): 405-410. [13] 薛春芳, 董文杰, 毛明策, 等. 渭河流域秋雨统计降尺度预估的 试验研究[J]. 热带气象学报, 2013, 29(5): 849-856. [14] Guo Y, Li J P, Li Y. Seasonal forecasting of North China summer rainfall using a statistical downscaling model[J]. Journal of Applied Meteorology and Climatology, 2014, 53(6): 1739-1749. [15] 阮成卿, 李建平, 冯娟. 中国西南地区后冬降水的统计降尺度模 型[J]. 中国科学: 地球科学, 2015, 45(7): 1020-1033. [16] 汤剑平, 高红霞, 李艳, 等. IPCC-A2 情景下我国21 世纪风能变 化的统计降尺度方法研究[J]. 太阳能学报, 2009, 30(5): 655-666. [17] Atlas R, Hoffman R N, Ardizzone J, et al. A cross-calibrated, multiplatform ocean surface wind velocity product for meteorological and oceanographic applications[J]. Bulletin of the American Meteorological Society, 2011, 92(2): 157-174. [18] 赵天保, 符淙斌, 柯宗建, 等. 全球大气再分析资料的研究现状 与进展[J]. 地球科学进展, 2010, 25(3): 242-254. [19] 姚志刚. 全球气候变化对美国东海岸区域气候变化和风暴潮活 动影响的研究[D]. 青岛: 中国海洋大学, 2012: 13-24. [20] 孙龙, 于华明, 王朋, 等. 东中国海及毗邻海域海面风场季节及 年际变化特征分析[J]. 海洋预报, 2010, 27(2): 30-37. [21] 王慧, 隋伟辉. 基于CCMP风场的中国近海18 个海区海面大风 季节变化特征分析[J]. 气象科技, 2013, 41(4): 720-725. [22] Fu G, Zhang S P, Gao S H, et al. Understanding of sea fog over the China seas[M]. Beijing: China Meteorological Press, 2011: 91-127. [23] 齐义泉, 施平, 王静. 卫星遥感海面风场的进展[J]. 遥感技术与 应用, 1998, 13(1): 56-61. [24] 袁俊鹏, 江静. 西北太平洋热带气旋路径及其与海温的关系[J]. 热带气象学报, 2009, 25(S1): 69-78. [25] Hoffman R N, Ardizzone J V, Leidner S M, et al. Error estimates for ocean surface winds: applying desroziers diagnostics to the cross-calibrated, multi-platform analysis of wind speed[J]. Journal of Atmospheric and Oceanic Technology, 2013, 30(11): 2596- 2603. |
服务与反馈:
|
【文章下载】【发表评论】【查看评论】【加入收藏】
|
|
|