PRECIS对SRES A1B情景下的中国区域气候变化预估分析 |
作者:潘婕1 2 3 4 刘珂5 夏冬冬2 3 |
单位:1. 中国农业科学院农业环境与可持续发展研究所, 北京 100081; 2. 国家海洋环境预报中心, 北京 100081; 3. 国家海洋局海洋灾害预报技术研究重点实验室, 北京 100081; 4. 北京大学物理学院, 北京 100871; 5. 黄河水利委员会水文局, 河南 郑州 450004 |
关键词:区域气候变化 PRECIS SRES A1B情景 降水 气温 |
分类号:P467 |
|
出版年·卷·期(页码):2017·34·第一期(34-46) |
摘要:
|
利用海气耦合大气环流模式HadCM3为PRECIS提供初始场和边界条件,驱动PRECIS模拟产生SRES A1B情景下的区域气候情景数据,分析了中国区域1961-2100年降水、气温的变化。结果表明:在SRES A1B情景下,中国区域未来降水量、气温总体呈现明显上升趋势,气温中日最低气温增幅最大,日最高气温增幅最小;21世纪前半叶(2011-2040年)到中叶(2041-2070年)期间,降水量、气温增加速率达到最高;降水在总体增加趋势中呈现出较多局地特征,21世纪后半叶,105°E以东地区出现多个降水增幅大值区;平均气温在未来各时段各区域均表现出升温的整体特征,新疆和东北地区升温幅度最大。 |
PRECIS is employed to simulate the climate under SRES A1B over China from 1961 to 2100, driven by the output from coupled ocean-atmosphere general circulation model HadCM3 under SRES A1B. With the projected data, the change of precipitation and temperature over China is investigated. It is indicated that:1. The precipitation and temperature over China show an overall upward trend in future, and as for the magnitude of temperature's increase, the daily minimum/maximum temperature has a largest/smallest increase respectively. 2. The precipitation and temperature show a maximum increase pace from 2020 s (2011-2040) to 2050 s (2041-2070) in all-time. 3. The upward trend of precipitation is character of territorial. 4. Temperature will increase for all areas and all periods in future, especially in Xinjiang and Northeast China, the increase magnitude is the largest. |
参考文献:
|
[1] 《第二次气候变化国家评估报告》编写委员会. 第二次气候变化国家评估报告[M]. 北京:科学出版社, 2011. [2] 许吟隆, 吴绍洪, 吴建国, 等. 气候变化对中国生态和人体健康的影响与适应[M]. 北京:科学出版社, 2013. [3] IPCC. Climate Change 2007:The Physical Science Basis. Working Group I Contribution to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change[M]. Cambridge, UK and New York, USA:Cambridge University Press, 2007. [4] IPCC. Summary for Policymakers[M]//Climate Change 2013:The Physical Science B-asic. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge, UK and New York, USA:Cambridge University Press, 2013.. [5] Meinshausen M, Smith S J, Calvin K, et al. The RCP Greenhouse Gas Concentrations and Their Extensions from 1765 to 2300[J]. Climatic Change, 2011, 109(1-2):213-241, doi:10.1007/s10584-011-0156-z. [6] Gao X J, Zhao Z C, Ding Y H, et al. Climate Change Due to Greenhouse Effects in China as Simulated by A Regional Climate Model[J]. Advances in Atmospheric Sciences, 2001, 18(6):1224-1230. [7] Gao X J, Zhao Z C, Giorgi F. Changes of Extreme Events in Regional Climate Simulations over East Asia[J]. Advances in Atmospheric Sciences, 2002, 19(5):927-942. [8] 高学杰, 赵宗慈, 丁一汇, 等. 温室效应引起的中国区域气候变化的数值模拟Ⅰ:模式对中国气候模拟能力的检验[J]. 气象学报, 2003, 61(1):20-28. [9] 高学杰, 赵宗慈, 丁一汇, 等. 温室效应引起的中国区域气候变化的数值模拟Ⅱ:中国区域气候的可能变化[J]. 气象学报, 2003, 61(1):29-38. [10] 高学杰, 石英, Giorgi F. 中国区域气候变化的一个高分辨率数值模拟[J]. 中国科学:地球科学, 2010, 40(7):911-922. [11] 高学杰, 石英, 张冬峰, 等. RegCM3对21世纪中国区域气候变化的高分辨率模拟[J]. 科学通报, 2012, 57(5):374-381. [12] Jones R G, Noguer M, Hassell D, et al. Generating High Resolution Climate Change Scenarios using PRECIS[M]. Exeter, UK:Met Office Hadley Centre, 2004. [13] 王芳栋, 许吟隆, 李涛. 区域气候模式PRECIS对中国气候的长期数值模拟试验[J]. 中国农业气象, 2010, 31(3):327-332. [14] Islam M N, Rafiuddin M, Ahmed A U, et al. Calibration of PRECIS in Employing Future Scenarios in Bangladesh[J]. International Journal of Climatology, 2008, 28(5):617-628. [15] Ul Islam S, Rehman N, Sheikh M M. Future Change in the Frequency of Warm and Cold Spells over Pakistan Simulated by the PRECIS Regional Climate Model[J]. Climatic Change, 2009, 94(1-2):35-45. [16] Shahgedanova M, Nosenko G, Khromova T, et al. Glacier Shrinkage and Climatic Change in the Russian Altai from the Mid-20th Century:An Assessment Using Remote Sensing and PRECIS Regional Climate Model[J]. Journal of Geophysical Research:Atmospheres, 2010, 115(D16):D16107. [17] Bhaskaran B, Ramachandran A, Jones R, et al. Regional Climate Model Applications on Sub-regional Scales over the Indian Monsoon Region:The Role of Domain Size on Downscaling Uncertainty[J]. Journal of Geophysical Research, 2012, 117(D17):D10113. [18] Tadross M, Jack C, Hewitson B. On RCM-based Projections of Change in Southern African Summer Climate[J]. Geophysical Research Letters, 2005, 32(23):L23713. [19] Kotroni V, Lykoudis S, Lagouvardos K, et al. A Fine Resolution Regional Climate Change Experiment for the Eastern Mediterranean:Analysis of the Present Climate Simulations[J]. Global and Planetary Change, 2008, 64(1-2):93-104. [20] Bartholy J, Pongrácz R, Pieczka I, et al. Computational Analysis of Expected Climate Change in the Carpathian Basin Using A Dynamical Climate Model[M]//Margenov S, Vulkov L G, Waśniewski J. Numerical Analysis and Its Applications. Berlin Heidelberg:Springer, 2009, 5434:176-183. [21] Black E, Brayshaw D J, Rambeau C M C. Past, Present and Future Precipitation in the Middle East:Insights from Models and Observations[J]. Philosophical Transactions of the Royal Society a:Mathematical Physical and Engineering Sciences, 2010, 368(1931):5173-5184. [22] Moufouma-Okia W, Rowell D P. Impact of Soil Moisture Initialisation and Lateral Boundary Conditions on Regional Climate Model Simulations of the West African Monsoon[J]. Climate Dynamics, 2010, 35(1):213-229. [23] Alves L M, Marengo J. Assessment of regional seasonal predictability using the PRECIS regional climate modeling system over South America[J]. Theoretical and Applied Climatology, 2010, 100(3-4):337-350. [24] Karmalkar A V, Bradley R S, Diaz H F. Climate change in Central America and Mexico:Regional Climate Model Validation and Climate Change Projections[J]. Climate Dynamics, 2011, 37(3-4):605-629. [25] Dulière V, Zhang Y X, Salathe E P. Extreme Precipitation and Temperature over the U.S. Pacific Northwest:A Comparison Between Observations, Reanalysis Data, and Regional Models[J]. Journal of Climate, 2011, 24(7):1950-1964. [26] 陶福禄, 熊伟, 许吟隆, 等. 气候变化情景下我国花生产量变化模拟[J]. 中国环境科学, 2000, 20(5):392-395. [27] 熊伟, 许吟隆, 林而达, 等. IPCC SRES A2和B2情景下我国玉米产量变化模拟[J]. 中国农业气象, 2005, 26(1):11-15. [28] 居辉, 熊伟, 许吟隆, 等. 气候变化对我国小麦产量的影响[J]. 作物学报, 2005, 31(10):1340-1343. [29] 朱建华, 侯振宏, 张小全. 气候变化对中国林业的影响与应对策略[J]. 林业经济, 2009, (11):78-83. [30] 李剑泉, 李智勇, 易浩若. 森林与全球气候变化的关系[J]. 西北林学院学报, 2010, 25(4):23-28. [31] 田晓瑞, 舒立福, 赵凤君, 等. 未来情景下西南地区森林火险变化[J]. 林业科学, 2012, 48(1):121-125. [32] 袁飞, 谢正辉, 任立良, 等. 气候变化对海河流域水文特性的影响. 水利学报, 2005, 36(3):274-279. [33] 刘浏, 徐宗学, 黄俊雄. 气候变化对太湖流域径流的影响[J]. 北京师范大学学报(自然科学版), 2010, 46(3):371-377. [34] 陈豫英, 许吟隆, 陈楠, 等. SRES A2和B2情景下宁夏可利用降水资源的变化[J]. 中国沙漠, 2011, 31(1):207-216. [35] 吴建国, 吕佳佳. 气候变化对青藏高原高寒草甸适宜气候分布范围的潜在影响[J]. 草地学报, 2009, 17(6):699-705. [36] 吴建国. 气候变化对7种保护植物分布的潜在影响[J]. 武汉植物学研究, 2010, 28(4):437-452. [37] 吴建国. 未来气候变化对7种荒漠植物分布的潜在影响[J]. 干旱区地理, 2011, 34(1):70-85. [38] 吴建国. 气候变化对7种乔木植物分布的潜在影响[J]. 植物分类与资源学报, 2011, 33(3):335-349. [39] 赵东升, 吴绍洪, 尹云鹤. 气候变化情景下中国自然植被净初级生产力分布[J]. 应用生态学报, 2011, 22(4):897-904. [40] 石晓丽, 吴绍洪, 戴尔阜, 等. 气候变化情景下中国陆地生态系统碳吸收功能风险评价[J]. 地理研究, 2011, 30(4):601-611. [41] 杨坤, 潘婕, 杨国静, 等. 不同气候变化情景下中国血吸虫病传播的范围与强度预估[J]. 气候变化研究进展, 2010, 6(4):248-253. [42] Nakićenovic N, Swart R. Special Report on Emissions Scenarios:A Special Report of Working Group III of the Intergovernmental Panel on Climate Change[M]. Cambridge, United Kingdom and New York:Cambridge University Press, 2000. [43] 许吟隆, 张勇, 林一骅, 等. 利用PRECIS分析SRES B2情景下中国区域的气候变化响应[J]. 科学通报, 2006, 51(17):2068-2074. [44] 杨红龙, 许吟隆, 张镭, 等. SRES A2情景下中国区域21世纪末平均和极端气候变化的模拟[J]. 气候变化研究进展, 2010, 6(3):157-163. [45] 姜大膀, 王会军, 郎咸梅. 全球变暖背景下东亚气候变化的最新情景预测[J]. 地球物理学报, 2004, 47(4):590-596. [46] 许崇海, 罗勇, 徐影. 全球气候模式对中国降水分布时空特征的评估和预估[J]. 气候变化研究进展, 2010, 6(6):398-404. [47] 许崇海, 沈新勇, 徐影. IPCC AR4模式对东亚地区气候模拟能力的分析[J]. 气候变化研究进展, 2007, 3(5):287-292. [48] 刘敏, 江志红. 13个IPCC AR4模式对中国区域近40 a气候模拟能力的评估[J]. 南京气象学院学报, 2009, 32(2):256-268. [49] 纪潇潇, 刘昌波, 潘婕, 等. PRECIS模拟系统对中国地面气温变化的QUMP集成预估[J]. 气候与环境研究, 2015, 20(5):500-510. [50] 胡伯彦, 汤剑平, 王淑瑜. 中国地区IPCC A1B情景下21世纪中期气候变化的数值模拟试验[J]. 气象科学, 2012, 32(2):127-136. [51] 王树舟, 于恩涛. 基于MIROC/WRF嵌套模式的中国气候变化预估[J]. 气候与环境研究, 2014, 19(1):11-22. |
服务与反馈:
|
【文章下载】【发表评论】【查看评论】【加入收藏】
|
|
|