浪流耦合数值模式在苏北辐射沙洲海域的应用研究 |
作者:管琴乐1 2 肖文军2 3 邱婷2 张蓓2 亢兴2 |
单位:1. 中国海洋大学, 山东 青岛 266000; 2. 国家海洋局东海预报中心, 上海 200081; 3. 华东师范大学河口海岸学国家重点实验室, 上海 200062 |
关键词:辐射沙洲 浪流耦合 ADCIRC SWAN 海浪 风暴潮 |
分类号:P731.22 |
|
出版年·卷·期(页码):2019·36·第四期(19-27) |
摘要:
|
采用三角形网格海洋模式ADCIRC-2DDI和海浪模式SWAN双向耦合模式,建立了苏北辐射沙洲海域高精度水动力模型,用以研究该海域天文潮-风暴潮-海浪相互作用。以2012年15号台风“布拉万”为例,分别采用WRF气象模型后报风场和台风模型风场进行台风期间水位和波浪场的数值模拟,与实测资料的对比结果显示模型较准确地模拟出了“布拉万”台风期间的风暴增水与海浪过程,但模拟的极值增水和二次增水时间较实测资料提前了3 h左右。对“布拉万”台风期间模拟结果的分析表明:在浅滩及浅滩前沿水域,水位和海流对海浪模拟结果具有显著影响,是否耦合计算的有效波高差异可达1 m以上;波浪对水位的影响具有空间差异,在水深大于15 m的区域,波浪引起的水位变化小于5 cm,在浅滩区域,波浪引起的水位变化在4~10 cm,是否考虑波浪耦合对漫滩区域的模拟结果影响较大,进行浅滩及浅滩前沿的水动力计算,有必要考虑浪流耦合过程。 |
A high resolution hydrodynamic model is established by coupling the unstructured-mesh ADCIRC-2DDI shallow water circulation model and SWAN spectral wave model to study the tide-storm surge-wave interactions in Northern JiangSu radial sand ridges areas. The super typhoon "Bolaven" is taken as an example to verify the hydrodynamic model. The hind-cast wind field of WRF model and wind filed of typhoon model are used to simulate the storm surges and ocean waves during the typhoon event. Compared with observations, the process of storm surge and ocean wave during "Bolaven" event is well simulated by the hydrodynamic model, while the time of the first and the second peak of storm surges simulated by the hydrodynamic model reveals a lead of 3 hours. It is found that the wave is remarkably influenced by water level and ocean current in Northern Jiangsu shoals, and the difference of significant wave height between coupled and uncoupled simulation is up to 1m. The influence of ocean wave on the water level shows spatial difference. The water level change caused by wave is less than 5cm in areas deeper than 15 m, while it is between 4~10 cm in shoals. The result also shows that it is necessary to take wave-current interaction effect into account in order to improve the simulation accuracy of the hydrodynamic model in Northern Jiangsu shoals. |
参考文献:
|
[1] 朱玉荣, 常瑞芳. 南黄海辐射沙洲成因的潮流数值模拟解释[J]. 青岛海洋大学学报, 1997, 27(2):218-224. [2] 诸裕良, 严以新, 薛鸿超. 黄海辐射沙洲形成发育潮流数学模型[J]. 水动力学研究与进展, 1998, 13(4):473-480. [3] 宋志尧, 严以新, 薛鸿超, 等. 南黄海辐射沙洲形成发育水动力机制研究——Ⅱ. 潮流运动立面特征[J]. 中国科学(D辑), 1998, 28(5):411-417. [4] 夏综万, 王锺桾. 黄海M2分潮的数值模拟[J]. 黄渤海海洋, 1984, 2(1):1-7. [5] 黄易畅, 汤毓祥. 江苏沿岸的潮汐运动Ⅰ. 潮汐运动的特征[J]. 黄渤海海洋, 1988, 6(2):6-11. [6] 张东生, 张君伦. 黄海海底辐射沙洲区的M2潮波[J]. 河海大学学报, 1996, 24(5):35-40. [7] 陶建峰, 张长宽. 黄海辐射沙脊群海域水环境数值模拟研究[J]. 河海大学学报(自然科学版), 2005, 33(4):472-475. [8] 张祥. 江苏沿海风暴潮数值模拟研究[D]. 南京:河海大学, 2008. [9] 张蓓. 苏北辐射沙洲海域潮波及风暴增水特征研究[D]. 南京:河海大学, 2012. [10] 张长宽, 张东生. 黄海辐射沙洲波浪折射数学模型[J]. 河海大学学报, 1997, 25(4):1-7. [11] 杨耀中, 冯卫兵. 南黄海辐射沙脊群波浪场数值模拟[J]. 河海大学学报(自然科学版), 2010, 38(4):457-461. [12] 李杰, 袁建忠. 风浪谱模型在苏北辐射沙洲海域的应用研究[J]. 水利经济, 2012, 30(4):53-56. [13] Luettich R A, Westerrink J J. ADCIRC user manual:a (parallel) advanced circulation model for oceanic[R]. Coastal and Estuarine Water, 2006. [14] The SWAN team. SWAN user manual cycle 40.85[R]. 2011. [15] Dietrich J C, Zijlema M, Westerink J J, et al. Modeling hurricane waves and storm surge using integrally-coupled, scalable compu-tations[J]. Coastal Engineering, 2011, 58(1):45-65. [16] 肖文军, 堵盘军, 邬惠明. 东海区三维风暴潮数值模式的建立和应用[J]. 海洋通报, 2010, 29(S1):28-33. |
服务与反馈:
|
【文章下载】【发表评论】【查看评论】【加入收藏】
|
|
|