非对称风场对台风浪模拟效果的比较研究 |
作者:吴彦1 赵红军1 叶荣辉2 孙杰1 孔俊1 |
单位:1. 江苏省海岸海洋资源开发与环境安全重点实验室 河海大学, 江苏 南京 210098; 2. 珠江水利委员会珠江水利科学研究院, 广东 广州 510611 |
关键词:非对称台风场 台风浪 数值模拟 |
分类号:P731.33 |
|
出版年·卷·期(页码):2020·37·第一期(55-61) |
摘要:
|
分析四象限非对称风场模型与叠加风场模型的优缺点,将模型结果与实测风速进行对比验证;利用上述两种风场模型分别驱动第三代海浪模式SWAN,对发生在南海海域的三场台风浪进行了数值模拟计算。结果显示:四象限非对称模型关于风速的计算值与实测值吻合度更高,尤其是当台风中心距离测站较近时;四象限非对称模型驱动SWAN模拟的台风浪精度优于叠加风场模型,适用于南海台风浪的数值模拟。 |
We analyze the advantages and disadvantages of the four-quadrant asymmetric wind model and the superimposed wind model by comparing the numerical results with observations. The two wind models are used to drive the third-generation wave model SWAN to simulate the typhoon waves of three typhoon events in the South China Sea. The results show that the wind speed of the four-quadrant asymmetric wind model coincides better with observations, especially when the typhoon center is close to the observation stations.. The accuracy of typhoon waves driven by the four-quadrant asymmetric model is better than that of the superimposed wind model. As a result, the four-quadrant asymmetric wind field model is more suitable for the numerical simulation of typhoon waves in the South China Sea. |
参考文献:
|
[1] Walsh K J E, Mcbride J L, Klotzbach P J, et al. Tropical cyclones and climate change[J]. Wiley Interdisciplinary Reviews:Climate Change, 2016, 7(1):65-89. [2] Wei C, Caracoglia L. Exploring hurricane wind speed along US Atlantic coast in warming climate and effects on predictions of structural damage and intervention costs[J]. Engineering Structures, 2016, 122:209-225. [3] 胡邦辉, 谭言科, 张学敏. 海面热带气旋域内风速分布[J]. 大气科学, 1999, 23(3):316-322. [4] Myers V A. Characteristics of United States hurricanes pertinent to levee design for lake okeechobee, Florida[R]. Hydrometeorological Report No. 32.Washington DC:Government Press, 1954. [5] Jelesnianski C P. A numerical calculation of storm tides induced by a tropical storm impinging on a continental shelf[J]. Monthly Weather Review, 1965, 93(6):343-358. [6] Holland G J. An analytic model of the wind and pressure profiles in hurricanes[J]. Monthly Weather Review, 1980, 108(8):1212-1218. [7] Olfateh M, Callaghan D P, Nielsen P, et al. Tropical cyclone wind field asymmetry-development and evaluation of a new parametric model[J]. Journal of Geophysical Research, 2017, 122(1):458-469. [8] Vickery P J, Wadhera D. Statistical models of Holland pressure profile parameter and radius to maximum winds of hurricanes from flight-level pressure and H*wind data[J]. Journal of Applied Meteorology and Climatology, 2008, 47(10):2497-2517. [9] 林伟, 方伟华. 西北太平洋台风风场模型中Holland B系数区域特征研究[J]. 热带地理, 2013, 33(2):124-132. [10] Miyazaki M, Ueno T, Unoki S. Theoretical investigations of typhoon surges along the Japanese coast (II)[J]. Oceanographical Magazine, 1961, 13(2):103-118. [11] Xie L, Bao S W, Pietrafesa L J, et al. A real-time hurricane surface wind forecasting model:formulation and verification[J]. Monthly Weather Review, 2006, 134(5):1355-1370. [12] Booij N, Ris R C, Holthuijsen L H. A third-generation wave model for coastal regions:1. Model description and validation[J]. Journal of Geophysical Research, 1999, 104(C4):7649-7666. [13] Rogers W E, Hwang P A, Wang D W. Investigation of wave growth and decay in the SWAN model:Three regional-scale application[J]. Journal of Physical Oceanography, 2003, 33(2):366-389. |
服务与反馈:
|
【文章下载】【发表评论】【查看评论】【加入收藏】
|
|
|