2016年10月11—19日东南太平洋一次温带气旋过程分析 |
作者:李秀镇1 宋盛凯1 郭文明2 钟剑1 李博3 |
单位:1. 中国卫星海上测控部, 江苏 江阴 214431; 2. 91876 部队气象台, 河北 秦皇岛 066203; 3. 青岛市城阳区气象局, 山东 青岛 266100 |
关键词:东南太平洋 温带气旋 涡度平流 温度平流 |
分类号:P443 |
|
出版年·卷·期(页码):2020·37·第二期(19-28) |
摘要:
|
利用美国国家环境预报中心发布的FNL资料、红外卫星云图资料和船测资料,对2016年10月17—19日某船舶在东南太平洋遭遇的一次温带气旋过程进行研究,以此为大洋航线上温带气旋预报保障能力提高积累经验。结果表明:(1)温带气旋A由绕极槽北伸切断发展而来,自西向东移动过程中在南太平洋大洋中部与另一气旋B合并加强对船舶航行造成影响;(2)气旋A初生阶段,大气低层旋转程度较强;成熟发展阶段在近地面、大气上层旋转程度较强;当气旋B初生发展时,气旋A中心附近自500 hPa以下为绝对涡度小值区,其上为绝对涡度大值区,绝对涡度垂直轴线向近B一侧倾斜;(3)槽后及气旋中心附近正涡度平流与槽前随高度增强的暖平流共同促使气旋发展。 |
The characteristic of an extratropical cyclone named A over the Southeast Pacific in 11-19 Oct 2016 is investigated using NCEP FNL data, HIMAWARI and GOES infrared satellite imagery. It is found that cyclone A developed from the polar trough and moved eastward. It merged with another cyclone named B in the middle of the south Pacific and affected the navigation of ships. A relatively high degree of rotation had been found in the lower atmosphere during the initial phase of cyclone A, while the rotation was stronger both at the lower and upper atmosphere in its mature phase. When cyclone B was developed, the absolute vorticity of cyclone A was small below 500 hPa and large above 500 hPa, and the vertical axis of absolute vorticity was inclined to cyclone B. The factors, which dominated the cyclonic development including the warm advection increased with altitude, and the positive vorticity advection after the trough and near the center of the cyclone. |
参考文献:
|
[1] 朱帅, 马卫民. 西南太平洋温带气旋统计分析[J]. 海洋预报, 2001, 18(3):45-52. [2] 张颖娴. 北半球温带气旋的气候学及其变率研究[D]. 南京:南京信息工程大学, 2012:1-12. [3] 丁一汇. 高等天气学[M]. 2版. 北京:气象出版社, 2005:150-193. [4] Zishka K M, Smith P J. The climatology of cyclones and anticyclones over North America and surrounding ocean environs for January and July, 1950-77[J]. Monthly Weather Review, 1980, 108(4):387-401. [5] Reitan C H. Frequencies of cyclones and cyclogenesis for North America, 1950-1970[J]. Monthly Weather Review, 1974, 102(12):861-868. [6] Wernli H, Schwierz C. Surface cyclones in the ERA-40 dataset (1958-2001). Part I:Novel identification method and global climatology[J]. Journal of the Atmospheric Sciences, 2006, 63(10):2486-2507. [7] 杨祖芳, 王文东. 南半球冬半年澳洲附近洋面上温带气旋的研究[J]. 应用气象学报, 1995, 6(1):43-49. [8] 陈锦年, 乐肯堂, 贾传明, 等. 南半球气旋发生频数的变化及其与赤道东太平洋水温和南方涛动的关系[J]. 海洋学报, 2000, 22(3):86-93. [9] Simmonds I, Murray R J. Southern extratropical cyclone behavior in ECMWF analyses during the FROST special observing periods[J]. Weather and Forecasting, 1999, 14(6):878-891. [10] Lim E P, Simmonds I. Explosive cyclone development in the Southern Hemisphere and a comparison with Northern Hemisphere events[J]. Monthly Weather Review, 2002, 130(9):2188-2209. [11] Orlanski I, Katzfey J, Menendez C, et al. Simulation of an extratropical cyclone in the Southern Hemisphere:Model sensitivity[J]. Journal of the Atmospheric Sciences, 1991, 48(21):2293-2312. [12] 傅刚, 郝燕, 刘娜, 等. 2004年11月南大洋上一对气旋的结构分析[J]. 海洋学报, 2007, 29(6):15-22. [13] 张鹏, 郭强, 陈博洋, 等. 我国风云四号气象卫星与日本Himawari-8/9卫星比较分析[J]. 气象科技进展, 2016, 6(1):72-75. [14] 王萌, 郑伟, 李峰. Himawari-8气象卫星黄海浒苔动态监测[J]. 应用气象学报, 2017, 28(6):714-723. [15] 达成, 邹晓蕾. GOES成像仪资料简介[J]. 气象科技进展, 2014, 4(4):52-61. [16] Petterssen S. A general survey of factors influencing develop-ment at sea level[J]. Journal of Meteorology, 1955, 12(1):36-42. [17] 熊秋芬, 张昕, 陶祖钰. 一次温带气旋涡度场演变特征及气旋发生发展机制分析[J]. 气象, 2016, 42(3):294-304. |
服务与反馈:
|
【文章下载】【发表评论】【查看评论】【加入收藏】
|
|
|