首页期刊介绍通知公告编 委 会投稿须知电子期刊广告合作联系我们在线留言
 
基于Argo剖面和SST以及SLA数据重构三维网格温度场
作者:李直龙  左军成  纪棋严  罗凤云  庄圆 
单位:浙江海洋大学, 浙江 舟山 316022
关键词:三维温度场 重构 Argo温度剖面 海表信息 梯度场 回归分析 
分类号:P731.11
出版年·卷·期(页码):2020·37·第四期(66-75)
摘要:
基于2004年1月—2017年4月的Argo剖面数据和SST数据,采用客观分析方法,构建出三维网格温度初始场,再采用回归分析方法统计出海面高度异常与三维网格温度初始场之间的相关关系,最后利用高分辨率的海面高度异常信息重构三维温度分析场。在西北太平洋区域构建了0.5°×0.5°的月平均三维温度分析场,垂向分辨率5 m(5~300 m)和10 m(300~700 m)。通过与BOA_Argo和EN4的逐月平均温度数据的时空分布对比分析表明:所构建的温度场能够较为真实地反映海洋温度场的垂向结构变化特征,能将SST信号的特征反映到混合层,并且能反映下层水团变化过程和特征。该分析场可以用于研究下层中小尺度温度变化特征,也可以作为模式初始场改进模式对海洋下层温盐的模拟结果。
Based on Argo profile and Sea Surface Temperature (SST) data from January 2004 to April 2017, threedimensional sea temperature field is constructed using objective analysis, and the correlation between sea Surface Level Anomaly (SLA) and the three-dimensional temperature field is calculated using regression analysis method. Thereafter, high-resolution SLA data is used to reconstruct three-dimensional temperature field. A 0.5°×0.5° monthly averaged three-dimensional temperature field is reconstructed for the northwest Pacific Ocean in this paper with the vertical resolution of 5 m and 10 m for the depth of 5~300 m and 300~700 m, respectively. By comparison with the temporal and spatial distribution of the BOA_monthly averaged Argo and EN4 temperature data, the temperature field reconstructed in this paper can reflect the characteristics of vertical sea temperature variation. In addition, the reconstructed temperature field can convey the SST signal into the mixed layer, and demonstrate the variation process and characteristics in the lower ocean. The temperature field reconstructed in this paper can be used to study the characteristics of small scale temperature variation, and can also be used as model initial condition to improve the simulation of temperature in the lower ocean.
参考文献:
[1] Guinehut S, Traon P Y L, Larnicol G, et al. Combining Argo and remote-sensing data to estimate the ocean three-dimensional temperature fields-a first approach based on simulated observations[J]. Journal of Marine Systems, 2004, 46(1-4):85-98.
[2] Carnes M R, Teague W J, Mitchell J L. Inference of subsurface thermohaline structure from fields measurable by satellite[J]. Journal of Atmospheric and Oceanic Technology, 1994, 11(2):551-566.
[3] Khedouri E, Szczechowski C, Cheney R. Potential oceanographic applications of satellite altimetry for inferring subsurface thermal structure[C]//Proceedings OCEANS'83. San Francisco, CA, USA:IEEE, 1983.
[4] Pascual A, Gomis D. Use of surface data to estimate geostrophic transport[J]. Journal of Atmospheric and Oceanic Technology, 2003, 20(6):912-926.
[5] Gavart M, De Mey P. Isopycnal EOFs in the azores current region:a statistical tool for dynamical analysis and data assimilation[J]. Journal of Physical Oceanography, 1997, 27(10):2146-2157.
[6] Hurlburt H E. Dynamic transfer of simulated altimeter data into subsurface information by a numerical ocean model[J]. Journal of Geophysical Research:Oceans, 1986, 91(C2):2372-2400.
[7] Chu P C, Fralick Jr C R, Haeger S D, et al. A parametric model for the Yellow Sea thermal variability[J]. Journal of Geophysical Research, 1997, 102(C5):10499-10507.
[8] Chu P C, Tseng H C, Chang C P, et al. South China Sea warm pool detected in spring from the Navy's master oceanographic observational data set (MOODS)[J]. Journal of Geophysical Research:Oceans, 1997, 102(C7):15761-15771.
[9] Yan C X, Zhu J, Li R F, et al. Roles of vertical correlations of background error and T-S relations in estimation of temperature and salinity profiles from sea surface dynamic height[J]. Journal of Geophysical Research:Oceans, 2004, 109(C8):C08010.
[10] 王喜冬, 韩桂军, 李威, 等. 利用卫星观测海面信息反演三维温度场[J]. 热带海洋学报, 2011, 30(6):10-17.
[11] 张春玲, 许建平, 鲍献文, 等. 利用遥感SST反演上层海洋三维温度场[J]. 海洋与湖沼, 2014, 45(1):114-125.
[12] Hosoda S, Ohira T, Nakamura T. A monthly mean dataset of global oceanic temperature and salinity derived from Argo float observations[J]. JAMSTEC Report Research Development, 2008, 8:47-59.
[13] Roemmich D, Gilson J. The 2004-2008 mean and annual cycle of temperature, salinity, and steric height in the global ocean from the Argo Program[J]. Progress in Oceanography, 2009, 82(2):81-100.
[14] Good S A, Martin M J, Rayner N A. EN4:Quality controlled ocean temperature and salinity profiles and monthly objective analyses with uncertainty estimates[J]. Journal of Geophysical Research:Oceans, 2013, 118(12):6704-6716.
[15] Li H, Xu F H, Zhou W, et al. Development of a global gridded Argo data set with Barnes successive corrections[J]. Journal of Geophysical Research:Oceans, 2017, 122(2):866-889.
[16] Zhou C J, Ding X H, Zhang J, et al. An objective algorithm for reconstructing the three-dimensional ocean temperature field based on Argo profiles and SST data[J]. Ocean Dynamics, 2017, 67(12):1523-1533.
[17] Fox D N, Teague W J, Barron C N, et al. The modular ocean data assimilation system (MODAS)[J]. Journal of Atmospheric and Oceanic Technology, 2002, 19(2):240-252.
[18] Reynolds R W, Smith T M, Liu C Y, et al. Daily high-resolutionblended analyses for sea surface temperature[J]. Journal of Climate, 2007, 20(22):5473-5496.
[19] AVISO. SSALTO/DUACS User Handbook:MSLA and (M)ADT near-real time and delayed time products[M]. Paris:CNES, 2012.
[20] Olber D, Gouretski V, Seib G, et al. Hydrographic atlas of the Southern Ocean[M]. Bremerhaven, Germany:Alfred Wegener Institute, 1992:17.
服务与反馈:
文章下载】【发表评论】【查看评论】【加入收藏
 
 海洋预报编辑部 地址:北京海淀大慧寺路8号 电话:010-62105776
投稿网址:http://www.hyyb.org.cn
邮箱:bjb@nmefc.cn
本系统由北京博渊星辰网络科技有限公司设计开发 技术支持电话:010-63361626