首页期刊介绍通知公告编 委 会投稿须知电子期刊广告合作联系我们在线留言
 
1614号台风“莫兰蒂”在厦门湾及其周边海域引发风暴潮的数值模拟
作者:朱婧1  叶龙彬1  陈德花1  李彦卿2  林毅3 
单位:1. 厦门市气象局 海峡气象开放实验室, 福建 厦门 361012;
2. 天津大学水利工程仿真与安全国家重点实验室, 天津 300072;
3. 天津市气象科学研究所, 天津 300072
关键词:台风 风暴潮 厦门湾 FVCOM 
分类号:P731.23
出版年·卷·期(页码):2020·37·第六期(20-30)
摘要:
基于FVCOM风暴潮模式,利用重建的台风风场资料,模拟了1614号台风"莫兰蒂"过程中厦门湾及其附近海域的风暴潮。结果表明:该模式能够较为准确地再现此次台风风暴潮过程。利用模拟结果分析了风场、风生流场和增水高度在台风过程中的特征,结论如下:(1)台风"莫兰蒂"造成闽南沿海大范围的增水。台风风场的时空变化是造成风生流流向和流速发生改变的主要原因。增水大值区分布特征与风生流方向较为一致,当岸线走向与风生流流向近乎垂直时往往容易出现显著增水;(2)平潭、厦门和东山站点风暴潮的余振振幅均大于先兆波动,其中厦门站振幅最强;(3)台风过程中最大增水区主要与台风风场和岸线特征有关,分布在台风东北象限和中心等向岸风长时间作用的区域。最大减水区主要与风场有关,往往出现在离岸风长时间作用的区域。
Based on the FVCOM storm surge model, this paper simulates the storm surge in the Xiamen Bay and its adjacent waters during the typhoon "Moranti" (1614) using the reconstructed typhoon wind field data. The results show that the model can reproduce the storm surge accurately. In addition, the characteristics of the wind field, wind-driven flow and the increased water level during the typhoon process are analyzed using the simulation results. It is found that typhoon "Moranti" caused large-scale water increase along the coast of southern Fujian. The temporal and spatial changes of the typhoon wind field are the main reasons for the changes in the direction and velocity of the wind-driven flow. The distribution characteristics of the increased water areas are consistent with the direction of the wind-driven flow. Significant water increase is likely to occur when the shoreline is nearly perpendicular to the direction of the wind-driven flow. The aftermath amplitudes of the storm surge at Pingtan, Xiamen and Dongshan stations are higher than the precursor fluctuations, and the amplitude at Xiamen station is the strongest. The maximum water increase mainly occurs in the northeast quadrant and the center of typhoon "Moranti" with long time influence of the onshore wind, which is related to the characteristics of typhoon wind field and coastline. The maximum water reduction area is mainly related to the typhoon wind field, and often occurs in the area where the offshore wind acts for a long time.
参考文献:
[1] 冯士筰. 风暴潮导论[M]. 北京:科学出版社, 1982:1-2.
[2] 陈金泉, 胡建宇, 林克, 等. 福建海岸台风暴潮数值预报方法的初步研究[J]. 厦门大学学报自然科学版, 1984, 23(4):485-496.
[3] 吴培木, 许永水, 李燕初, 等. 台湾海峡台风暴潮非线性数值计算[J]. 海洋学报, 1981, 3(1):28-43.
[4] 温生辉, 陈季良. 厦门附近海域潮流场的数值模拟[J]. 海洋学报, 1996, 18(2):15-25.
[5] 陈满春. 厦门湾潮流场的数值模拟[J]. 海洋通报, 1997, 16(3):13-20.
[6] 林翩然, 温生辉, 汤军健. 厦门海域二维潮流数值计算[J]. 台湾海峡, 2008, 27(4):526-532.
[7] 王庆业, 陈钰祥, 郭玉臣, 等. 宁德海域风暴潮数值模拟研究[J]. 海洋预报, 2013, 30(5):31-36.
[8] 林作梁, 朱学明, 鲍献文, 等. 基于FVCOM的泉州湾海域三维潮汐与潮流数值模拟[J]. 海洋学报, 2013, 35(1):15-24.
[9] 靖春生, 朱学明, 鲍献文, 等. 基于FVCOM的厦门湾及其周边海域三维潮流数值模拟[J]. 台湾海峡, 2011, 30(1):103-113.
[10] 王道生, 刘晓东, 庄海东. 基于FVCOM的台湾海峡三维潮汐与潮流数值模拟研究[J]. 应用海洋学学报, 2016, 35(4):491-498.
[11] Blumberg A F, Mellor G L. A description of a three-dimensional coastal ocean circulation model[M]//Heaps N S. Threedimensional Coastal Ocean Models. American:The American Geophysical Union, 1987:1-6.
[12] Blumberg A F. A primer for ECOM-si[R]. Mahwah, New Jersey:Technical Report of HydroQual, 1994:1-66.
[13] Haidvogel D B, Arango H G, Hedstrom K, et al. Model evaluation experiments in the North Atlantic Basin:simulations in nonlinear terrain-following coordinates[J]. Dynamics of Atmospheres and Oceans, 2000, 32(3-4):239-281.
[14] Lynch D R, Naimie C E. The M2 tide and its residual on the outer banks of the Gulf of Maine[J]. Journal of Physical Oceanography, 1993, 23(10):2222-2253.
[15] Naimie C E. Georges Bank residual circulation during weak and strong stratification periods:prognostic numerical model results[J]. Journal of Geophysical Research:Oceans, 1996, 101(C3):6469-6486.
[16] Chen C S, Zhu J R, Ralph E, et al. Prognostic modeling studies of the Keweenaw current in Lake Superior. Part I:formation and evolution[J]. Journal of Physical Oceanography, 2001, 31(2):379-395.
[17] Chen C S, Zhu J R, Zheng L Y, et al. A non-orthogonal primitive equation coastal ocean circulation model:application to Lake Superior[J]. Journal of Great Lakes Research, 2004, 30 Suppl 1:41-54.
[18] Chen C, Beardsle R C, Cowles G. An unstructured-grid, finitevolume community ocean model FVCOM user manual[R]. Cambridge:SMAST/UMASSD, 2013.
[19] 叶涛焱, 李莉, 王咏雪, 等. 潮滩减少对杭州湾悬沙特征的影响[J]. 天津大学学报(自然科学与工程技术版), 2019, 52(4):393-404.
[20] 王晓东, 蒋国荣, 王英俊. 单站潮汐的谱分析预报[J]. 海洋预报, 2008, 25(3):53-59.
[21] 陶英佳, 张璐, 何倩倩. 汕头南澳海域典型台风过程水动力数值分析[J]. 人民珠江, 2019, 40(7):48-55.
[22] 陶小琴. 基于FVCOM的厦门湾台风风暴潮数值模拟[D]. 厦门:厦门大学, 2015.
[23] Janssen P A E M. Consequences of the effect of surface gravity waves on the mean air flow[M]//Banner M L, Grimshaw R H J. Breaking Waves. Berlin:Springer, 1992:193-198.
[24] Fujita T. Pressure distribution within typhoon[J]. Geophysical Magazine, 1952, 23(4):437-451.
服务与反馈:
文章下载】【发表评论】【查看评论】【加入收藏
 
 海洋预报编辑部 地址:北京海淀大慧寺路8号 电话:010-62105776
投稿网址:http://www.hyyb.org.cn
邮箱:bjb@nmefc.cn
本系统由北京博渊星辰网络科技有限公司设计开发 技术支持电话:010-63361626