摘要:
|
基于USGODAE的现场漂流浮标观测数据,利用GODAE Ocean View框架下的IVTT Class4标准,评估了国家海洋环境预报中心业务化中等分辨率版本全球海洋环流预报系统的海表温度预报技巧。结果表明:该系统的海表温度预报均方根误差范围在0.65~0.73℃左右,在国际7个业务化系统中,预报精度处于中等水平。无论相对于延续性预报场或气候态预报场,其技巧评分皆为正值,说明该系统对海表温度的预报性能优于自身延续性预报和气候态场预报。 |
This paper evaluates the performance of the Chinese Global operational Oceanography Forecasting system (CGOFS) with the intermediate resolution version in forecasting SST using the Intercomparison and Validation Task Team Class4 metrics under the framework of GODAE Ocean View. The observational SST data observations used for validation in this study are the in-situ surface drifting bouys that are archived by the USGODAE server. The results show that the SST RMSE of the CGOFS system is about between 0.65~0.73℃ through the forecast leading day, which is the middle range within the seven international operational forecasting systems. The skill scores against persisted field and climatology are positive, which demonstrates the skill of CGOFS system out-performs its own persisted forecasts and climatology for the SST. |
参考文献:
|
[1] Bell M J, Lefèbvre M, Le Traon P Y, et al. GODAE:the global ocean data assimilation experiment[J]. Oceanography, 2009, 22(3):14-21. [2] Bell M J, Schiller A, Le Traon P Y, et al. An introduction to GODAE ocean view[J]. Journal of Operational Oceanography, 2015, 8(S1):s2-s11. [3] Martin M J, Balmaseda M, Bertino L, et al. Status and future of data assimilation in operational oceanography[J]. Journal of Operational Oceanography, 2015, 8(S1):s28-s48. [4] 夏冬冬, 任湘湘. 国外海洋预报动态[J]. 海洋预报, 2012, 29(2):73-74. [5] Le Provost C. GODAE Internal Metrics for model performance evaluation and intercomparison[M]. Toulouse, France:CNRS/LEGOS, 2002. [6] Hernandez F, Bertino L, Brassington G, et al. Validation and intercomparison studies within GODAE[J]. Oceanography, 2009, 22(3):128-143. [7] Hernandez F. List of internal metrics for the MERSEA-GODAE global ocean internal document[M]. France:Mercator Ocean, 2007. [8] Hunke E C, Lipscomb W H. CICE:the Los Alamos sea ice model documentation and software user's manual version 4.1[R]. Los Alamos:Los Alamos National Laboratory, 2010. [9] Lellouche J M, Le Galloudec O, Drévillon M, et al. Evaluation of global monitoring and forecasting systems at Mercator Océan[J]. Ocean Science, 2013, 9(1):57-81. [10] Smith G C, Roy F, Reszka M, et al. Sea ice forecast verification in the Canadian global ice ocean prediction system[J]. Quarterly Journal of the Royal Meteorological Society, 2016, 142(695):659-671. [11] Mehra A, Rivin I. A real time ocean forecast system for the North Atlantic Ocean[J]. Terrestrial, Atmospheric and Oceanic Sciences, 2010, 21(1):211-228. [12] Brassington G B, Freeman J W, Huang X, et al. Ocean model, analysis and prediction system:version 2[R]. CAWCR Technical Report No 52, Aspendale, VIC, Australia:Centre for Australian Weather and Climate Research, 2012. [13] Hernandez F, Blockley E, Brassington G B, et al. Recent progress in performance evaluations and near real-time assessment of operational ocean products[J]. Journal of Operational Oceanography, 2015, 8(S2):s221-s238. [14] Ryan A G, Regnier C, Divakaran P, et al. GODAE ocean view class 4 forecast verification framework:global ocean intercomparison[J]. Journal of Operational Oceanography, 2015, 8(S1):s98-s111. [15] 方长芳, 张翔, 尹建平. 21世纪初海洋预报系统发展现状和趋势[J]. 海洋预报, 2013, 30(4):93-102. [16] Wang H. Operational oceanography forecasting system in developing countries[R]. Washington, USA:GODAE OceanView Symposium, 2013. [17] 王辉, 万莉颖, 秦英豪, 等. 中国全球业务化海洋学预报系统的发展和应用[J]. 地球科学进展, 2016, 31(10):1090-1104. [18] Griffies S M, Harrison M J, Pacanowski P C, et al. A technical guide to MOM4. GFDL ocean group technical report NO. 5[R]. Princeton, New Jersey:NOAA/Geophysical Fluid Dynamics Laboratory, 2004:1-291. [19] Winton M. A reformulated three-layer sea ice model[J]. Journal of Atmospheric and Oceanic Technology, 2000, 17(4):525-531. [20] Wang D X, Qin Y H, Xiao X J, et al. El Niño and El Niño Modoki variability based on a new ocean reanalysis[J]. Ocean Dynamics, 2012, 62(9):1311-1322. [21] Wang D X, Qin Y H, Xiao X J, et al. Preliminary results of a new global ocean reanalysis[J]. Chinese Science Bulletin, 2012, 57(26):3509-3517. [22] 肖贤俊, 何娜, 张祖强, 等. 卫星遥感海表温度资料和高度计资料的变分同化[J]. 热带海洋学报, 2011, 30(3):1-8. [23] 刘娜, 王辉, 凌铁军, 等. 一个基于MOM的全球海洋数值同化预报系统[J]. 海洋通报, 2018, 37(2):139-148. [24] Kalnay E, Kanamitsu M, Baker W E. Global numerical weather prediction at the national meteorological center[J]. Bulletin of the American Meteorological Society, 1990, 71(10):1410-1428. [25] Madec G. NEMO reference manual, ocean dynamics component:NEMO-OPA, preliminary version[M]. France, Institute Pierre Simon Laplace (IPSL), 2008:1288-1619. [26] Fichefet T, Maqueda M A M. Sensitivity of a global sea ice model to the treatment of ice thermodynamics and dynamics[J]. Journal of Geophysical Research:Oceans, 1997, 102(C6):12609-12646. [27] Bleck R. An oceanic general circulation model framed in hybrid Isopycnic-Cartesian coordinates[J]. Ocean Modelling, 2002, 4(1):55-88. [28] O'Carroll A G, Eyre J R, Saunders R W. Three-way error analysis between AATSR, AMSR-E, and in situ sea surface temperature observations[J]. Journal of Atmospheric and Oceanic Technology, 2008, 25(7):1197-1207. [29] Boyer T, Levitus S, Garcia H, et al. Objective analyses of annual, seasonal, and monthly temperature and salinity for the world ocean on a 0.25° grid[J]. International Journal of Climatology, 2005, 25(7):931-945. |
服务与反馈:
|
【文章下载】【发表评论】【查看评论】【加入收藏】
|
|
|