1909号台风“利奇马”影响期间浙江大风分布特征及成因分析 |
作者:王丽娟1 邓方俊1 史珩瑜2 杨亦萍1 |
单位:1. 浙江省台州市气象局, 浙江 台州 318000; 2. 浙江省预警信息发布中心, 浙江 杭州 310002 |
关键词:大风 台风 “利奇马” 海温 垂直风切变 |
分类号:P458.1+23 |
|
出版年·卷·期(页码):2020·37·第六期(83-95) |
摘要:
|
利用NCEP FNL再分析资料(1°×l°和0.25°×0.25°)、NOAA日平均海温及其距平资料(0.25°×0.25°)和浙江常规气象观测站实况10 m高度风资料,对1909号台风"利奇马"影响期浙江期间的大风分布特征及其成因进行了分析。结果表明:(1)台风"利奇马"影响期间,浙江大风极端风力强,测站最大极大风达到61.4 m/s,强风出现时间长、大风范围广、登陆后大风减弱慢;(2)浙江局地强风的提前出现与台风强度增强有关,1910号台风"罗莎"对副高的间接影响以及登陆后台风"利奇马"与西风带槽的合并影响,导致台风"利奇马"北向分量加大;登陆后的台风"利奇马"离开浙江台州后只经低海拔和平原路径导致地面摩擦少,强度减弱慢,且地面东北侧高压加强南落导致登陆后浙江地区气压梯度仍较大,使登陆后浙江极端大风仍较强且持续时间长;(3)台风"利奇马"登陆前和登陆时的中尺度特征表明:高空维持较大风速,下沉运动使高层动量下传导致低层或地面大风猛增;(4)登陆前台风"利奇马"所经洋面高海温分布是导致台风强度迅速增强的原因,临近登陆前近海海温较低导致强度略有减弱。登陆前台风"利奇马"中心范围垂直风切变大小对台风强度有一定的预报指示作用:登陆前垂直切变值偏大,台风强度增长缓慢;垂直切变值迅速减小则有利于台风强度迅速增强。 |
Using the NCEP FNL reanalysis data (1°×l° and 0.25°×0.25°), the NOAA daily mean sea temperature and its anomaly data (0.25°×0.25°) and the Zhejiang conventional meteorological observatory wind data at the height of 10 meters, the distribution characteristics and causes of gale winds when typhoon "Lekima" (1909) affected Zhejiang province are analyzed in this paper. The results show that the long-lasting gale winds caused by the typhoon "Lekima" cover a wide range of Zhejiang province with the maximum wind speed of 61.4 m/s, and the gale winds weakens gradually after landing. The early occurrence of local gale winds in Zhejiang province is related to the increase of the typhoon intensity. The indirect impact of typhoon "Rosa" (1910) on the subtropical high and the combined effect of "Lekima" after landing with the westerly belt trough results in the intensification of the northward component of "Lekima". Typhoon "Lekima" traveled through low altitude and plain paths after landing and left Taizhou, resulting in weak friction on the ground and slower intensity weakening. Moreover, the intensification of high pressure system northeast of "Lekima" increases the pressure gradient over Zhejiang province, resulting in the long duration of extreme gale winds after the landing of "Lekima". The mesoscale characteristics of "Lekima" before and during the process of its landing indicate continuous high wind speed at high altitudes and that the gale winds at ground surface are caused by the descending of momentum from the upper level. The positive sea surface temperature (SST) anomaly on the moving path of "Lekima" before landing is the main reason for the rapid increase in the intensity of the typhoon. cause of rapid intensification. The low offshore sea temperature, however, slightly decreases the intensity of Lekima. In addition, the strength of vertical wind shear within the central area of "Lekima" before landing is helpful to predict the intensity of "Lekima". The intensity of "Lekima" increases slowly if the vertical wind shear is large, while the intensity increases rapidly if the vertical wind shear decreases. |
参考文献:
|
[1] 陈联寿, 丁一汇. 西北太平洋台风概论[M]. 北京:科学出版社, 1979:440-448. [2] 杨玉华, 雷小途. 我国登陆台风引起的大风分布特征的初步分析[J]. 热带气象学报, 2004, 20(6):633-642. [3] 田辉, 马开玉, 林振山. 华南、华东沿海登陆台风暴雨和大风的分析[J]. 应用气象学报, 1999, 10(Z1):148-152. [4] 王雷, 李晓丽, 徐哲永. 近50年影响舟山的台风气候特征分析[J]. 海洋预报, 2011, 28(5):36-43. [5] 钮学新, 朱持则. 热带气旋大风圈的预报[J]. 热带气象学报, 1997, 13(4):365-367. [6] 陈润珍, 孔宁谦. 广西沿海热带气旋大风数值预报探讨[J]. 海洋预报, 2004, 21(1):52-55. [7] 董美莹, 俞燎霓."麦莎"台风影响期间浙江的大风分布特征和成因分析[J]. 科技导报, 2006, 24(4):29-32. [8] 曹楚, 王忠东, 郑峰. 台风"莫拉克"影响期间浙江大风成因分析[J]. 气象科技, 2013, 41(6):1109-1115. [9] 王忠东, 曹楚, 楼丽银, 等. 超强台风"罗莎"和"韦帕"大风过程对比分析[J]. 气象科技, 2009, 37(2):156-161. [10] 王亚男, 王庆元. 1210号台风大风和渤海湾天津沿岸风暴潮分析[J]. 海洋预报, 2013, 30(6):7-12. [11] 陈德花, 张玲, 张伟, 等."莫兰蒂"台风致灾大风的结构特征及成因[J]. 大气科学学报, 2018, 41(5):692-701. [12] 高聪晖, 高珊."苏迪罗"影响期间福建的大风特点及其成因分析[J]. 福建气象, 2016(1):25-29. [13] 郭云谦, 王毅, 沈越婷, 等. 台风"利奇马"不同区域降水极端性特征及成因分析[J]. 气象科学, 2020, 40(1):65-77. [14] 娄小芬, 马昊, 黄旋旋, 等. 台风"利奇马"造成浙江极端降水的成因分析[J]. 气象科学, 2020, 40(1):78-88. [15] 刘晓汝, 谢作威. 2019年超强台风"利奇马"引发浙江特大暴雨过程分析[J]. 气象科学, 2020, 40(1):89-96. [16] 范爱芬, 娄小芬, 彭霞云, 等. 台风"达维"对"苏拉"的影响分析[J]. 海洋预报, 2014, 31(2):26-34. [17] Chan J C L, Duan Y H, Shay L K. Tropical cyclone intensity change from a simple ocean-atmosphere coupled model[J]. Journal of the Atmospheric Sciences, 2001, 58(2):154-172. [18] 薛根元, 张建海, 陈红梅, 等. 超强台风Saomai(0608)加强成因分析及海温影响的数值试验研究[J]. 第四纪研究, 2007, 27(3):311-321. [19] 石顺吉, 余锦华, 郑礼新. 环境条件对0709号超强台风"圣帕"影响的分析[J]. 台湾海峡, 2009, 28(1):135-141. [20] Gray W M. Global view of the origin of tropical disturbances and storms[J]. Monthly Weather Review, 1968, 96(10):669-700. [21] Frank W M, Ritchie E A. Effects of vertical wind shear on the intensity and structure of numerically simulated hurricanes[J]. Monthly Weather Review, 2001, 129(9):2249-2269. [22] Zehr R M. Tropical cyclogenesis in the western north Pacific[R]. Washington:NOAA, 1992. [23] DeMaria M, Kaplan J. A statistical hurricane intensity prediction scheme (SHIPS) for the Atlantic basin[J]. Weather and Forecasting, 1994, 9(2):209-220. [24] Palmer C K, Barnes G M. The effects of vertical wind shear as diagnosed by the NCEP/NCAR reanalysis data on northeast Pacific hurricane intensity[C]//25th Conference on Hurricanes and Tropical Meteorology. San Diego:Amer Meteor Soc, 2002:122-123. |
服务与反馈:
|
【文章下载】【发表评论】【查看评论】【加入收藏】
|
|
|