首页期刊介绍通知公告编 委 会投稿须知电子期刊广告合作联系我们在线留言
 
集合预报及其在季节尺度气候预测中的应用
作者:陈溢豪1 2  张蕴斐1 3  周倩1 3  祖子清1 3 
单位:1. 国家海洋环境预报中心, 北京 100081;
2. 厦门大学海洋与地球学院, 福建 厦门 361005;
3. 国家海洋环境预报中心 自然资源部海洋灾害预报技术重点实验室, 北京 100081
关键词:集合预报 季节尺度气候预测 厄尔尼诺 ENSO 
分类号:P456.7;P732.5
出版年·卷·期(页码):2020·37·第六期(102-111)
摘要:
系统回顾了集合预报技术的发展,介绍了4种比较常用的集合构建方法,重点关注这些方法在季节尺度气候预测领域的研究进展及应用,特别是在ENSO集合预报领域。此外,还从季节尺度气候预测系统的发展、集合设计方案和ENSO集合预报效果等方面介绍了国内外3个应用比较广泛的季节尺度气候预测系统,可为集合预报技术和季节尺度气候预测系统的发展和应用提供参考。
This paper systematically reviews the progress of ensemble forecasting and four frequently used methods in generating ensembles with focus on their application in the seasonal climate prediction, especially in the area of ENSO ensemble prediction. Meanwhile, three seasonal climate forecasting systems widely used at home and abroad are introduced in terms of evolution, ensemble design and prediction skill for ENSO, which provides a reference for the development and application of ensemble forecasting techniques and of seasonal climate prediction systems.
参考文献:
[1] Lorenz E N. Deterministic nonperiodic flow[J]. Journal of the Atmospheric Sciences, 1963, 20(2):130-141.
[2] Lorenz E N. A study of the predictability of a 28-variable atmospheric model[J]. Tellus, 1965, 17(3):321-333.
[3] Lorenz E N. The predictability of a flow which possesses many scales of motion[J]. Tellus, 1969, 21(3):289-307.
[4] Epstein E S. Stochastic dynamic prediction[J]. Tellus, 1969, 21(6):739-759.
[5] Leith C E. Theoretical skill of Monte Carlo forecasts[J]. Monthly Weather Review, 1974, 102(6):409-418.
[6] Wobus R L, Kalnay E. Three years of operational prediction of forecast skill at NMC[J]. Monthly Weather Review, 1995, 123(7):2132-2148.
[7] Buizza R. Potential forecast skill of ensemble prediction and spread and skill distributions of the ECMWF ensemble prediction system[J]. Monthly Weather Review, 1997, 125(1):99-119.
[8] Bishop C H, Toth Z. Using ensembles to identify observations likely to improve forecasts[C]//Preprints, 11th Conf. on Numerical Weather Prediction. Norfolk, VA:American Meteorology Society, 1996:72-74.
[9] Feng R, Duan W S, Mu M. Estimating observing locations for advancing beyond the winter predictability barrier of Indian ocean dipole event predictions[J]. Climate Dynamics, 2017, 48(3-4):1173-1185.
[10] Lopez H, Kirtman B P. WWBS, ENSO predictability, the spring barrier and extreme events[J]. Journal of Geophysical Research:Atmospheres, 2014, 119(17):10114-10138.
[11] Kirtman B, Pirani A. The state of the art of seasonal prediction:outcomes and recommendations from the first world climate research program workshop on seasonal prediction[J]. Bulletin of the American Meteorological Society, 2009, 90(4):455-458.
[12] Tompkins A M, De Zárate M I O, Saurral R I, et al. The climatesystem historical forecast project:providing open access to seasonal forecast ensembles from centers around the globe[J]. Bulletin of the American Meteorological Society, 2017, 98(11):2293-2301.
[13] Palmer T N. Extended-range atmospheric prediction and the Lorenz model[J]. Bulletin of the American Meteorological Society, 1993, 74(1):49-66.
[14] Molteni F, Buizza R, Palmer T N, et al. The ECMWF ensemble prediction system:methodology and validation[J]. Quarterly Journal of the Royal Meteorological Society, 1996, 122(529):73-119.
[15] Tracton M S, Kalnay E. Operational ensemble prediction at the national meteorological center:practical aspects[J]. Weather and Forecasting, 1993, 8(3):379-398.
[16] Charney J G, Shukla J. Predictability of monsoons[M]//Lighthill J, Pearce R P. Monsoon Dynamics. Cambridge:Cambridge University Press, 1981:99-108.
[17] McPhaden M J, Busalacchi A J, Cheney R, et al. The tropical ocean-global atmosphere observing system:a decade of progress[J]. Journal of Geophysical Research:Oceans, 1998, 103(C7):14169-14240.
[18] Zebiak S E, Cane M A. A model Niño-southern oscillation[J]. Monthly Weather Review, 1987, 115(10):2262-2278.
[19] Alves O, Wang G, Zhong A, et al. POAMA:Bureau of meteorology operational coupled model seasonal forecast system[C]//Science for Drought:Proceedings of the National Drought Forum. Brisbane:Queensl. Dep. of Primary Ind., 2003.
[20] Saha S, Nadiga S, Thiaw C, et al. The NCEP climate forecast system[J]. Journal of Climate, 2006, 19(15):3483-3517.
[21] Stockdale T N, Anderson D L T, Balmaseda M A, et al. ECMWF seasonal forecast system 3 and its prediction of sea surface temperature[J]. Climate Dynamics, 2011, 37(3-4):455-471.
[22] Palmer T N, Mureau R, Molteni F. The Monte Carlo forecast[J]. Weather, 1990, 45(6):198-207.
[23] Sivillo J K, Ahlquist J E, Toth Z. An ensemble forecasting primer[J]. Weather Forecasting, 1997, 12(4):809-818.
[24] 杜钧. 集合预报的现状和前景[J]. 应用气象学报, 2002, 13(1):16-28.
[25] 关吉平, 黄泓, 张立凤. 集合预报中初始扰动生成方法的探讨[J]. 解放军理工大学学报(自然科学版), 2003, 4(2):87-90.
[26] 王辉, 刘娜, 李本霞, 等. 海洋可预报性和集合预报研究综述[J]. 地球科学进展, 2014, 29(11):1212-1225.
[27] 段晚锁, 汪叶, 霍振华, 等. 数值天气预报和气候预测的集合预报方法:思考与展望[J]. 气候与环境研究, 2019, 24(3):396-406.
[28] Hoffman R N, Kalnay E. Lagged average forecasting, an alternative to Monte Carlo forecasting[J]. Tellus A:Dynamic Meteorology and Oceanography, 1983, 35(2):100-118.
[29] Toth Z, Kalnay E. Ensemble forecasting at NMC:the generation of perturbations[J]. Bulletin of the American Meteorological Society, 1993, 74(12):2317-2330.
[30] Schubert S D, Suarez M. Dynamical predictability in a simple general circulation model:average error growth[J]. Journal of the Atmospheric Sciences, 1989, 46(3):353-370.
[31] Murphy J M. Assessment of the practical utility of extended range ensemble forecasts[J]. Quarterly Journal of the Royal Meteorological Society, 1990, 116(491):89-125.
[32] 杨学胜, 陈德辉, 冷亭波, 等. 时间滞后与奇异向量初值生成方法的比较试验[J]. 应用气象学报, 2002, 13(1):62-66.
[33] Arribas A, Glover M, Maidens A, et al. The GloSea4 ensemble prediction system for seasonal forecasting[J]. Monthly Weather Review, 2011, 139(6):1891-1910.
[34] Toth Z, Kalnay E. Ensemble forecasting at NCEP and the breeding method[J]. Monthly Weather Review, 1997, 125(12):3297-3319.
[35] Kalnay E. 大气模式、资料同化和可预报性[M]. 蒲朝霞, 译. 北京:气象出版社, 2005.
[36] Farrell B F. Optimal excitation of baroclinic waves[J]. Journal of the Atmospheric Sciences, 1989, 46(9):1193-1206.
[37] Mureau R, Molteni F, Palmer T N. Ensemble prediction using dynamically conditioned perturbations[J]. Quarterly Journal of the Royal Meteorological Society, 1993, 119(510):299-323.
[38] Palmer T N, Buizza R, Molteni F, et al. Singular vectors and the predictability of weather and climate[J]. Philosophical Transactions of the Royal Society A:Mathematical, Physical and Engineering Sciences, 1994, 348(1688):459-475.
[39] Palmer T N, Zanna L. Singular vectors, predictability and ensemble forecasting for weather and climate[J]. Journal of Physics A:Mathematical and Theoretical, 2013, 46(25):254018.
[40] Moore A M, Kleeman R. The singular vectors of a coupled oceanatmosphere model of ENSO. I:thermodynamics, energetics and error growth[J]. Quarterly Journal of the Royal Meteorological Society, 1997, 123(540):953-981.
[41] Moore A M, Kleeman R. The singular vectors of a coupled oceanatmosphere model of ENSO. Ⅱ:sensitivity studies and dynamical interpretation[J]. Quarterly Journal of the Royal Meteorological Society, 1997, 123(540):983-1006.
[42] Moore A M, Kleeman R. Skill assessment for ENSO using ensemble prediction[J]. Quarterly Journal of the Royal Meteorological Society, 1998, 124(546):557-584.
[43] Moore A M, Kleeman R. The differences between the optimal perturbations of coupled models of ENSO[J]. Journal of Climate, 2001, 14(2):138-163.
[44] Kleeman R, Tang Y M, Moore A M. The calculation of climatically relevant singular vectors in the presence of weather noise as applied to the ENSO problem[J]. Journal of the Atmospheric Sciences, 2003, 60(23):2856-2868.
[45] Tang Y M, Kleeman R, Miller S. ENSO predictability of a fully coupled GCM model using singular vector analysis[J]. Journal of Climate, 2006, 19(14):3361-3377.
[46] Kug J S, Ham Y G, Kimoto M, et al. New approach for optimal perturbation method in ensemble climate prediction with empirical singular vector[J]. Climate Dynamics, 2010, 35(2-3):331-340.
[47] Mu M, Duan W S, Wang B. Conditional nonlinear optimal perturbation and its applications[J]. Nonlinear Processes in Geophysics, 2003, 10(6):493-501.
[48] Wang Q, Mu M, Dijkstra H A. Application of the conditional nonlinear optimal perturbation method to the predictability study of the Kuroshio large meander[J]. Advances in Atmospheric Sciences, 2012, 29(1):118-134.
[49] Zu Z Q, Mu M, Dijkstra H A. Optimal nonlinear excitation of decadal variability of the North Atlantic thermohaline circulation[J]. Chinese Journal of Oceanology and Limnology, 2013, 31(6):1368-1374.
[50] Zu Z Q, Mu M, Dijkstra H A. Three-dimensional structure of optimal nonlinear excitation for decadal variability of the thermohaline circulation[J]. Atmospheric and Oceanic Science Letters, 2013, 6(6):410-416.
[51] Zhou F F, Mu M. The impact of verification area design on tropical cyclone targeted observations based on the CNOP method[J]. Advances in Atmospheric Sciences, 2011, 28(5):997-1010.
[52] Duan W S, Huo Z H. An approach to generating mutually independent initial perturbations for ensemble forecasts:orthogonal conditional nonlinear optimal perturbations[J]. Journal of the Atmospheric Sciences, 2016, 73(3):997-1014.
[53] Huo Z H, Duan W S, Zhou F F. Ensemble forecasts of tropical cyclone track with orthogonal conditional nonlinear optimal perturbations[J]. Advances in Atmospheric Sciences, 2019, 36(2):231-247.
[54] Cai M, Kalnay E, Toth Z. Bred vectors of the Zebiak-cane model and their potential application to ENSO predictions[J]. Journal of Climate, 2003, 16(1):40-56.
[55] Yang S C, Kalnay E, Cai M, et al. ENSO bred vectors in coupled ocean-atmosphere general circulation models[J]. Journal of Cli-mate, 2006, 19(8):1422-1436.
[56] Houtekamer P L, Derome J. Methods for ensemble prediction[J]. Monthly Weather Review, 1995, 123(7):2181-2196.
[57] Houtekamer P L, Lefaivre L, Derome J, et al. A system simulation approach to ensemble prediction[J]. Monthly Weather Review, 1996, 124(6):1225-1242.
[58] Evensen G. Sequential data assimilation with a nonlinear quasi-geostrophic model using Monte Carlo methods to forecast error statistics[J]. Journal of Geophysical Research:Oceans, 1994, 99(C5):10143-10162.
[59] 沈浙奇, 唐佑民, 高艳秋. 集合资料同化方法的理论框架及其在海洋资料同化的研究展望[J]. 海洋学报, 2016, 38(3):1-14.
[60] Zheng F, Zhu J, Zhang R H, et al. Ensemble hindcasts of SST anomalies in the tropical pacific using an intermediate coupled model[J]. Geophysical Research Letters, 2006, 33(19):L19604.
[61] 郑飞, 朱江, 王慧. ENSO集合预报系统的检验评价[J]. 气候与环境研究, 2007, 12(5):587-594.
[62] Ham Y G, Kug J S, Kang I S. Optimal initial perturbations for El Nino ensemble prediction with ensemble Kalman filter[J]. Climate Dynamics, 2009, 33(7-8):959-973.
[63] Kirtman B P. The COLA anomaly coupled model:ensemble ENSO prediction[J]. Monthly Weather Review, 2003, 131(10):2324-2341.
[64] Zheng F, Wang H, Zhu J. ENSO ensemble prediction:initial error perturbations vs. model error perturbations[J]. Chinese Science Bulletin, 2009, 54(14):2516-2523.
[65] Zheng F, Zhu J, Wang H, et al. Ensemble hindcasts of ENSO events over the past 120 years using a large number of ensembles[J]. Advances in Atmospheric Sciences, 2009, 26(2):359-372.
[66] Feng L S, Zheng F, Zhu J, et al. The role of stochastic model error perturbations in predicting the 2011/12 double-dip La Niña[J]. SOLA, 2005, 11:65-69.
[67] Zheng F, Zhu J. Improved ensemble-mean forecasting of ENSO events by a zero-mean stochastic error model of an intermediate coupled model[J]. Climate Dynamics, 2016, 47(12):3901-3915.
[68] Tao L J, Duan W S. Using a nonlinear forcing singular vector approach to reduce model error effects in ENSO forecasting[J]. Weather and Forecasting, 2019, 34(5):1321-1342.
[69] Yan X Q, Tang Y M. An analysis of multi-model ensembles for seasonal climate predictions[J]. Quarterly Journal of the Royal Meteorological Society, 2013, 139(674):1179-1198.
[70] Palmer T N, Alessandri A, Andersen U, et al. Development of a European multimodel ensemble system for seasonal-to-interannual prediction (Demeter)[J]. Bulletin of the American Meteorological Society, 2004, 85(6):853-872.
[71] Wang B, Lee J Y, Kang I S, et al. Advance and prospectus of seasonal prediction:assessment of the APCC/CliPAS 14-model ensemble retrospective seasonal prediction (1980-2004)[J]. Climate Dynamics, 2009, 33(1):93-117.
[72] Liu H F, Tang Y M, Chen D K, et al. Predictability of the Indian ocean dipole in the coupled models[J]. Climate Dynamics, 2016, 48(5-6):2005-2024.
[73] Palmer T N, Doblas-Reyes F J, Hagedorn R, et al. Probabilistic prediction of climate using multi-model ensembles:from basics to applications[J]. Philosophical Transactions of the Royal Society B:Biological Sciences, 2005, 360(1463):1991-1998.
[74] Doblas-Reyes F J, Déqué M, Piedelievre J P. Multi-model spread and probabilistic seasonal forecasts in PROVOST[J]. Quarterly Journal of the Royal Meteorological Society, 2000, 126(567):2069-2087.
[75] Yun W T, Stefanova L, Mitra A K, et al. A multi-model super ensemble algorithm for seasonal climate prediction using DEMETER forecasts[J]. Tellus A, 2005, 57(3):280-289.
[76] Lau N C. Modeling the seasonal dependence of the atmospheric response to observed El Niños in 1962-76[J]. Monthly Weather Review, 1985, 113(11):1970-1996.
[77] Ji M, Kumar A, Leetmaa A. A multiseason climate forecast system at the national meteorological center[J]. Bulletin of the American Meteorological Society, 1994, 75(4):569-578.
[78] Stockdale T N, Anderson D L T, Alves J O S, et al. Global seasonal rainfall forecasts using a coupled ocean-atmosphere model[J]. Nature, 1998, 392(6674):370-373.
[79] Takaya Y, Yasuda T, Fujii Y, et al. Japan meteorological agency/meteorological research institute-coupled prediction system version 1(JMA/MRI-CPS1) for operational seasonal forecasting[J]. Climate Dynamics, 2017, 48(1-2):313-333.
[80] Saha S, Moorthi S, Wu X R, et al. The NCEP climate forecast system version 2[J]. Journal of Climate, 2014, 27(6):2185-2208.
[81] Johnson S J, Stockdale T N, Ferranti L, et al. SEAS5:the new ECMWF seasonal forecast system[J]. Geoscientific Model Development, 2019, 12(3):1087-1117.
[82] 吴统文, 宋连春, 刘向文, 等. 国家气候中心短期气候预测模式系统业务化进展[J]. 应用气象学报, 2013, 24(5):533-543.
[83] Liu X W, Wu T W, Yang S, et al. Performance of the seasonal forecasting of the Asian summer monsoon by BCC_CSM1.1(m)[J]. Advances in Atmospheric Sciences, 2015, 32(8):1156-1172.
[84] 顾伯辉, 郑志海, 封国林, 等. 季节预测模式对东亚夏季环流的预测能力及其对热带海洋的响应分析[J]. 大气科学, 2017, 41(1):91-105.
[85] 郭渠, 刘向文, 吴统文, 等. 基于BCC_CSM模式的中国东部夏季降水预测检验及订正[J]. 大气科学, 2017, 41(1):71-90.
[86] Ren H L, Jin F F, Song L C, et al. Prediction of primary climate variability modes at the Beijing climate center[J]. Journal of Meteorological Research, 2017, 31(1):204-223.
[87] 任宏利, 刘颖, 左金清, 等. 国家气候中心新一代ENSO预测系统及其对2014/2016年超强厄尔尼诺事件的预测[J]. 气象, 2016, 42(5):521-531.
[88] Yu R C, Zhou T J, Wu T W, et al. Development and evaluation of high resolution climate system models[M]. Singapore:Springer, 2016.
[89] Wu T W, Lu Y X, Fang Y J, et al. The Beijing climate center climate system model (BCC-CSM):the main progress from CMIP5 to CMIP6[J]. Geoscientific Model Development, 2019, 12(4):1573-1600.
[90] Zhou T J, Yu Y Q, Liu Y M, et al. Flexible global oceanatmosphere-land system model:a modeling tool for the climate change research community[M]. Heidelberg:Springer, 2014.
[91] Bao Q, Lin P F, Zhou T J, et al. The flexible global oceanatmosphere-land system model, spectral version 2:FGOALS-s2[J]. Advances in Atmospheric Sciences, 2013, 30(3):561-576.
[92] 包庆, 吴小飞, 李矜霄, 等. 2018-2019年秋冬季厄尔尼诺和印度洋偶极子的预测[J]. 科学通报, 2019, 64(1):73-78.
[93] 凌铁军, 王彰贵, 王斌, 等. 基于CCSM3气候模式的同化模拟试验[J]. 海洋学报, 2009, 31(6):9-21.
[94] 李熠, 陈幸荣, 谭晶, 等. 基于CESM气候模式的同化模拟实验[J]. 海洋预报, 2015, 32(3):1-12.
[95] 李熠, 陈幸荣, 谭晶, 等. 基于CESM气候模式的ENSO后报试验[J]. 海洋学报, 2015, 37(9):39-50.
[96] 张守文, 宋春阳, 王辉, 等. 基于CESM预测系统对全球关键海区海温主要模态后报能力评估[J]. 海洋学报, 2018, 40(9):18-30.
[97] 宋春阳, 姜华, 张守文, 等. 基于CESM模式同化及后报实验的南海气候特征分析[J]. 海洋预报, 2018, 35(6):48-57.
服务与反馈:
文章下载】【发表评论】【查看评论】【加入收藏
 
 海洋预报编辑部 地址:北京海淀大慧寺路8号 电话:010-62105776
投稿网址:http://www.hyyb.org.cn
邮箱:bjb@nmefc.cn
本系统由北京博渊星辰网络科技有限公司设计开发 技术支持电话:010-63361626