福州沿海赤潮暴发的物理-生态耦合模拟研究 |
作者:丁萍 |
单位:福建省海洋预报台, 福建 福州 350003 |
关键词:赤潮 冷空气 分层 离岸流输运 |
分类号:X55 |
|
出版年·卷·期(页码):2021·38·第二期(80-90) |
摘要:
|
基于物理-生态耦合数值模型对2019年5月发生在福州连江黄岐半岛附近海域的赤潮事件进行研究,采用时空分析和叶绿素变化率方程诊断的方法,对该赤潮事件的形成过程和成因进行分析。结果表明:冷空气减弱造成的垂向层化和闽江口附近海域的离岸流输运共同作用,促进了此次赤潮的发生。 |
Based on a coupled physical-ecological numerical model, the formation processes and causes of the red tide event occurred near the coast of Huangqi peninsula of Fuzhou in May 2019 is analyzed using temporal-spatial analysis and diagnosis of chlorophyll change rate equation. The results show that the vertical stratification caused by the weakening of cold air and the offshore transport near the Minjiang estuary contribute to the occurrence of the red tide event. |
参考文献:
|
[1] 许翠娅, 黄美珍, 杜琦. 福建沿岸海域主要赤潮生物的生态学特征[J]. 台湾海峡, 2010, 29(3):434-441. [2] 郭皓, 丁德文, 林凤翱, 等. 近20a我国近海赤潮特点与发生规律[J]. 海洋科学进展, 2015, 33(4):547-558. [3] 李雪丁. 福建沿海近10 a赤潮基本特征分析[J]. 环境科学, 2012, 33(7):2210-2216. [4] Jan S, Wang J, Chern C S, et al. Seasonal variation of the circulation in the Taiwan Strait[J]. Journal of Marine Systems, 2002, 35(3/4):249-268. [5] Hu J Y, Kawamura H, Li C Y, et al. Review on current and seawater volume transport through the Taiwan Strait[J]. Journal of Oceanography, 2010, 66(5):591-610. [6] Wang J, Hong H S, Jiang Y W. A coupled physical-biological modeling study of the offshore phytoplankton bloom in the Taiwan Strait in winter[J]. Journal of Sea Research, 2016, 107:12-24. [7] 邓华, 管卫兵, 曹振轶, 等. 2012年福建沿海大规模米氏凯伦藻赤潮暴发的水文气象原因探讨[J]. 海洋学研究, 2016, 34(4):28-38. [8] 杨昀, 黄海龙, 曾银东, 等. 2012年大规模米氏凯伦藻赤潮前后年份春季福建沿海温盐及环流结构对比[J]. 海洋与湖沼, 2019, 50(3):553-562. [9] 张亚锋, 王旭涛, 殷克东. 南海台风引发藻华的生物机制[J]. 生态学报, 2018, 38(16):5667-5678. [10] 林静柔, 唐丹玲, 娄全胜. 超级台风"南玛都"对南海北部叶绿素a、温盐及溶解氧的影响[J]. 生态科学, 2015, 34(4):9-14. [11] 林佳宁, 颜天, 张清春, 等. 福建沿海米氏凯伦藻赤潮对皱纹盘鲍的危害原因[J]. 海洋环境科学, 2016, 35(1):27-34. [12] 张俊峰, 俞建良, 庞海龙, 等. 利用水文气象要素因子的变化趋势预测南海区赤潮的发生[J]. 海洋预报, 2006, 23(1):9-19. [13] 矫晓阳. 叶绿素a预报赤潮原理探索[J]. 海洋预报, 2004, 21(2):56-63. [14] 石晓勇, 李鸿妹, 王颢, 等. 夏季台湾暖流的水文化学特性及其对东海赤潮高发区影响的初步探讨[J]. 海洋与湖沼, 2013, 44(5):1208-1215. [15] 屠建波, 王保栋. 长江口营养元素生物地球化学研究[J]. 海洋环境科学, 2004, 23(4):10-13. [16] Shchepetkin A F, McWilliams J C. The regional oceanic modeling system (ROMS):a split-explicit, free-surface, topography-following-coordinate oceanic model[J]. Ocean Modelling, 2005, 9(4):347-404. [17] Song Y H, Haidvogel D. A semi-implicit ocean circulation model using a generalized topography-following coordinate system[J]. Journal of Computational Physics, 1994, 115(1):228-244. [18] Mellor G L, Yamada T. Development of a turbulence closure model for geophysical fluid problems[J]. Reviews of Geophysics, 1982, 20(4):851-875. [19] Mellor G L. One-dimensional, ocean surface layer modeling:a problem and a solution[J]. Journal of Physical Oceanography, 2001, 31(3):790-809. [20] Fennel K, Wilkin J, Levin J, et al. Nitrogen cycling in the middle atlantic bight:results from a three-dimensional model and implications for the North Atlantic nitrogen budget[J]. Global Biogeochemical Cycles, 2006, 20(3):GB3007. [21] Geider R J, MacIntyre H L, Kana T M. A dynamic model of photoadaptation in phytoplankton[J]. Limnology and Oceanography, 1996, 41(1):1-15. [22] Geider R J, MacIntyre H L, Kana T M. Dynamic model of phytoplankton growth and acclimation:responses of the balanced growth rate and the chlorophyll a:carbon ratio to light, nutrientlimitation and temperature[J]. Marine Ecology Progress Series, 1997, 148:187-200. [23] Eppley R W. Temperature and phytoplankton growth in the sea[J]. Fishery Bulletin, 1972, 70(4):1063-1085. [24] Evans G T, Parslow J S. A model of annual plankton cycles[J]. Biological Oceanography, 1985, 3(3):327-347. [25] Gentleman W, Leising A, Frost B, et al. Functional responses for zooplankton feeding on multiple resources:a review of assumptions and biological dynamics[J]. Deep Sea Research Part II:Topical Studies in Oceanography, 2003, 50(22/26):2847-2875. [26] 郭民权, 曾银东, 李雪丁, 等. 平潭近岸海域浮子漂移轨迹及其数值模拟[J]. 应用海洋学学报, 2014, 33(4):449-454. [27] 曾银东. 平潭海域精细化三维温盐流业务化数值预报系统[J]. 海洋预报, 2017, 34(6):39-47. [28] Wang W, Wang J, Choi F M P, et al. Global warming and artificial shorelines reshape seashore biogeography[J]. Global Ecology and Biogeography, 2020, 29(2):220-231. |
服务与反馈:
|
【文章下载】【发表评论】【查看评论】【加入收藏】
|
|
|