首页期刊介绍通知公告编 委 会投稿须知电子期刊广告合作联系我们在线留言
 
一个多参数优化系统在简单模型中的应用
作者:祖子清1  杨庆2  夏江江2  张蕴斐1  朱学明1 
单位:1. 国家海洋环境预报中心 自然资源部海洋灾害预报技术重点实验室, 北京 100081;
2. 中国科学院东亚区域气候-环境重点实验室, 中国科学院大气物理研究所, 北京 100029
关键词:数据同化 参数估计 模式偏差 多参数优化 
分类号:P73
出版年·卷·期(页码):2021·38·第三期(11-18)
摘要:
针对数值模式的物理参数,发展了一个多参数优化系统,可以根据观测数据对模式的多个参数进行同时调整。该系统具有设计简单、无需伴随模式和便于移植等特点。在孪生试验中,针对盒子模型的3个参数,经过约10次迭代,多参数优化系统可以收敛到预先给定的参数真值。通过对比同时优化和分别单独优化3个参数增量,发现分别单独优化参数增量存在一定的局限性。将多参数优化系统应用到简单模型的尝试和检验,结果表明:优化算法的收敛速度和模型的积分次数处于可接受的范围内,因此具有同时调整多个复杂模式物理参数的潜力。
A multi-parameter optimization system is developed in this study, which can be used to simultaneously adjust numerical model parameters based on observation data. The system is characterized by simple framework and high portability without the need of adjoint model. In the twin experiments, the three parameters of a box model is convergent to the prescribed true values after about ten times of iteration. By comparing the parameter increasement in single-parameter optimization and multi-parameter optimization, the limitation of singleparameter optimization is revealed, which possibly yields the wrong directions of parameter adjustment. This is case study to apply the multi-parameter optimization system to a simple numerical model, which shows its encouraging performance in the convergent speed and model iteration times. As a result, the multi-parameter optimization system can be potentially applied to adjust the parameters of complex numerical models.
参考文献:
[1] Lorenz E N. Climatic Predictability in the Physical Basis of Climate and Climate Modeling[R]. WMO GARP Publ. Ser No, 16, 1975:132-136.
[2] 王宗辰, 于福江, 原野. 四维变分同化技术在风暴潮数值模拟中的应用[J]. 海洋预报, 2015, 32(1):1-9.
[3] Zhang K, Mu M, Wang Q. Identifying the Sensitive Area in Adaptive Observation for Predicting the Upstream Kuroshio Transport Variation in a 3-D Ocean Model[J].Science China:Earth Sciences, 2017, 60(5):866-875.
[4] Duan W S, Li X Q, Tian B. Towards Optimal Observational Array for Dealing With Challenges of El Niño-Southern Oscillation Predictions due to Diversities of El Niño[J]. Climate Dynamics, 2018, 51(9/10):3351-3368.
[5] 汪雷, 王彰贵, 凌铁军, 等. 海洋模式中垂直混合参数化方案介绍[J]. 海洋预报, 2014, 31(5):93-104.
[6] 王骥鹏, 闻斌, 耿再兴, 等. 混合坐标大洋环流模式Hycom的坐标选取与参数化设置敏感性试验[J]. 海洋预报, 2008, 25(3):93-102.
[7] Wang Q, Tang Y M, Dijkstra H A. An Optimization Strategy for Identifying Parameter Sensitivity in Atmospheric and Oceanic Model[J]. Monthly Weather Review, 2017, 145(8):3293-3305.
[8] Duan W S, Tian B, Xu H. Simulations of Two Types of El Niño Events by an Optimal Forcing Vector Approach[J]. Climate Dynamics, 2014, 43(5/6):1677-1692.
[9] Duan W S., P Zhao, Hu J Y, et al. The Role of Nonlinear Forcing Singular Vector Tendency Error in Causing the "Spring Predictability Barrier" for ENSO[J]. Journal of Meteorological Research, 2016, 30(6):853-866.
[10] Annan J D, Hargreaves J C. Efficient Parameter Estimation for a Highly Chaotic System[J]. Tellus A:Dynamic Meteorology and Oceanography, 2004, 56(5):520-526.
[11] Kondrashov D, Sun C J, Ghil M. Data Assimilation for a Coupled Ocean-Atmosphere Model. Part II:Parameter Estimation[J]. Monthly Weather Review, 2008, 136(12):5062-5076.
[12] Skachko S, Brankart J M, Castruccio F, et al. Improved Turbulent Air-Sea Flux Bulk Parameters for Controlling the Response of the Ocean Mixed Layer:a Sequential Data Assimilation Approach[J]. Journal of Atmospheric and Oceanic Technology, 2009, 26(3):538-555, 549, 551-552, 554-555.
[13] Ruiz J J, Pulido M, Miyoshi T. Estimating Model Parameters with Ensemble-Based Data Assimilation:a Review[J]. Journal of the Meteorological Society of Japan, 2013, 91(2):79-99.
[14] Smedstad O M, O' Brien J J. Variational Data Assimilation and Parameter Estimation in an Equatorial Pacific Ocean Model[J]. Progress in Oceanography, 1991, 26(2):179-241.
[15] Lardner R W, Song Y. Optimal Estimation of Eddy Viscosity and Friction Coefficients for a Quasi-Three-Dimensional Numerical Tidal Model[J]. Atmosphere-Ocean, 1995, 33(3):581-611.
[16] Zhang H J, Franssen H J H, Han X J, et al. State and Parameter Estimation of Two Land Surface Models Using the Ensemble Kalman Filter and the Particle Filter[J]. Hydrology and Earth System Sciences, 2017, 21(9):4927-4958.
[17] Han G J, Li W, He Z J, et al. Assimilated Tidal Results of Tide Gauge and TOPEX/POSEIDON Data over the China Seas Using a Variational Adjoint Approach with a Nonlinear Numerical Model[J]. Advances in Atmospheric Sciences, 2006, 23(3):449-460.
[18] Li Y N, Peng S Q, Yan J, et al. On Improving Storm Surge Forecasting Using an Adjoint Optimal Technique[J]. Ocean Modelling, 2013, 72:185-197.
[19] 吴新荣, 王喜冬, 李威, 等[J]. 海洋数据同化与数据融合技术应用综述[J]. 海洋技术学报, 2015, 34(3):97-103.
[20] Zhang J C, Lu X Q. Parameter Estimation for a Three-Dimensional Numerical Barotropic Tidal Model with Adjoint Method[J]. International Journal for Numerical Methods in Fluids, 2008, 57(1):47-92.
[21] Peng S Q, Li Y N, Xie L. Adjusting the Wind Stress Drag Coefficient in Storm Surge Forecasting Using an Adjoint Technique[J]. Journal of Atmospheric and Oceanic Technology, 2013, 30(3):590-608.
[22] Zhang X F, Han G J, Li D, et al.. Variational Estimation of Wave-Affected Parameters in a Two-Equation Turbulence Model[J]. Journal of Atmospheric and Oceanic Technology, 2015, 32(3):528-546.
[23] Stommel H. Thermohaline Convection with Two Stable Regimes of Flow[J]. Tellus, 1961, 13(2):224-230.
[24] Dijkstra H A. Nonlinear Physical Oceanography:a Dynamical Systems Approach to the Large Scale Ocean Circulation and El Niño[M]. Netherlands:Springer, 2000.
[25] Mu M, Sun L, Dijkstra H A. The Sensitivity and Stability of the Ocean's Thermohaline Circulation to Finite-Amplitude Perturbations[J]. Journal of Physical Oceanography, 2004, 34(10):2305-2315.
[26] Boggs P, Tolle J W. Sequential Quadratic Programming[J]. Acta Numerica, 1995, 4(4):1-51.
[27] Lee J H, Jung Y M, Yuan Y X, et al. A Subspace SQP Method for Equality Constrained Optimization[J]. Computational Optimization and Applications, 2019, 74(1):177-194.
服务与反馈:
文章下载】【发表评论】【查看评论】【加入收藏
 
 海洋预报编辑部 地址:北京海淀大慧寺路8号 电话:010-62105776
投稿网址:http://www.hyyb.org.cn
邮箱:bjb@nmefc.cn
本系统由北京博渊星辰网络科技有限公司设计开发 技术支持电话:010-63361626