摘要:
|
利用中尺度气象模式WRF-ARW 3.7.1版本,选取6种积云对流参数化方案,对台风“尤特”进行了数值模拟敏感性试验,讨论了不同积云对流参数化方案对影响我国最大的西北太平洋登陆型台风的模拟情况。结果表明:积云对流参数化方案对台风路径和强度影响较为明显;模式对大尺度环流配置模拟的差异是造成台风路径差异的主要原因;在模拟时间较长的情况下,台风核心区对流层中下层的不稳定层结及较为强盛的上升运动使得台风强度偏强。 |
Based on the Advanced Research Weather Research and Forecasting Model (WRF-ARW), this paper conducts sensitivity experiments for typhoon Utor (No. 0104) simulation using six cumulus convection parameterization schemes and discusses the impact of different cumulus convection parameterization schemes on the simulation of landing typhoons in the Northwest Pacific Ocean. The results show that the cumulus convection parameterization scheme has a significant impact on the typhoon track and intensity. The difference in the simulation of the large-scale circulation pattern is the main reason that causes the difference in typhoon path. In a long-period simulation, the unstable stratification in the middle and lower troposphere of the typhoon center and the strong ascending motion makes the typhoon stronger. |
参考文献:
|
[1] 陈联寿, 丁一汇. 西太平洋台风概论[M]. 北京:科学出版社, 1979:511. [2] Prater B E, Evans J L. Sensitivity of modeled tropical cyclone track and structure of hurricane Irene(1999) to the convective parameterization scheme[J]. Meteorology and Atmospheric Physics, 2002, 80(1-4):103-115. [3] Raju P V S, Potty J, Mohanty U C. Sensitivity of physical parameterizations on prediction of tropical cyclone Nargis over the Bay of Bengal using WRF model[J]. Meteorology and Atmospheric Physics, 2011, 113(3-4):125-137. [4] 高元勇, 邢建勇, 陈耀登. MPAS-A模式中不同积云对流参数化方案对西北太平洋台风模拟效果的影响[J]. 海洋预报, 2019, 36(5):10-18. [5] Sun Y, Zhong Z, Lu W, et al. Why are tropical cyclone tracks over the western north pacific sensitive to the cumulus parameterization scheme in regional climate Modeling? A case study for Megi (2010)[J]. Monthly Weather Review, 2014, 142(3):1240-1249. [6] 李响. WRF模式中积云对流参数化方案对西北太平洋台风路径与强度模拟的影响[J]. 中国科学:地球科学, 2012, 42(12):1966-1978. [7] 寿绍文. 天气学分析[M]. 3版. 北京:气象出版社, 2016:186. [8] 赵宗慈, 江滢. 热带气旋与台风气候变化研究进展[J]. 科技导报, 2010, 28(15):88-96. [9] Skamarock W C, Klemp J B, Dudhia J, et al. A description of the advanced research WRF version 3[R]. No. NCAR/TN-475+ STR, Boulder:University Corporation for Atmospheric Research, 2008. [10] Dee D P, Uppala S M, Simmons A J, et al. The ERA-interim reanalysis:configuration and performance of the data assimilation system[J]. Quarterly Journal of the Royal Meteorological Society, 2011, 137(656):553-597. [11] Ying M, Zhang W, Yu H, et al. An overview of the China Meteorological Administration tropical cyclone database[J]. Journal of Atmospheric and Oceanic Technology, 2014, 31(2):287-301. [12] Kain J S. The kain-fritsch convective parameterization:an update[J]. Journal of Applied Meteorology and Climatology, 2004, 43(1):170-181. [13] Janjić Z I. The step-mountain eta coordinate model:further developments of the convection, viscous sublayer, and turbulence closure schemes[J]. Monthly Weather Review, 1994, 122(5):927-945. [14] Janjić Z I. Comments on "development and evaluation of a convection scheme for use in climate models"[J]. Journal of the Atmospheric Sciences, 2000, 57(21):3686. [15] 邓华. Grell积云对流参数化方案模拟华南暴雨能力初探[C]//第26届中国气象学会年会灾害天气事件的预警、预报及防灾减灾分会场论文集. 杭州:中国气象学会, 2009. [16] Grell G A. Prognostic evaluation of assumptions used by cumulus parameterizations[J]. Monthly Weather Review, 1993, 121(3):764-787. [17] Arakawa A, Schubert W H. Interaction of a cumulus cloud ensemble with the large-scale environment, Part I[J]. Journal of the Atmospheric Sciences, 1974, 31(3):674-701. [18] Pan H L, Wu W S. Implementing a mass flux convective parameterization package for the NMC medium-range forecast model[C]//Proceedings of the 10th Conference on Numerical Weather Prediction. Portland, OR:American Meteorological Society, 1994:96-98. [19] Grell G A, Dévényi D. A generalized approach to parameterizing convection combining ensemble and data assimilation techniques[J]. Geophysical Research Letters, 2002, 29(14):1693. [20] Tiedtke M. A comprehensive mass flux scheme for cumulus parameterization in large-scale models[J]. Monthly Weather Review, 1989, 117(8):1779-1800. [21] Zhang C X, Wang Y Q, Hamilton K. Improved representation of boundary layer clouds over the southeast pacific in ARW-WRF using a modified Tiedtke cumulus parameterization scheme[J]. Monthly Weather Review, 2011, 139(11):3489-3513. [22] Holland G J. Tropical cyclone motion:environmental interaction plus a Beta effect[J]. Journal of the Atmospheric Sciences, 1983, 40(2):328-342. [23] 陈联寿, 孟智勇. 我国热带气旋研究十年进展[J]. 大气科学, 2001, 25(3):420-431. [24] 颜曦, 赵军. 大气数值模式积云对流参数化方案综述[C]//第35届中国气象学会年会S1灾害天气监测、分析与预报. 合肥:中国气象学会, 2018. [25] 李任承, 顾光芹. 关于假相当位温的精确计算[J]. 气象, 1990, 16(3):13-17. |
服务与反馈:
|
【文章下载】【发表评论】【查看评论】【加入收藏】
|
|
|