不同边界层高度诊断方法对海洋大气边界层高度诊断的适用性研究 |
作者:董议文1 张蕴斐1 张戈2 韩博3 4 李响1 易侃5 |
单位:1. 国家海洋环境预报中心 自然资源部海洋灾害预报技术重点实验室, 北京 100081; 2. 中国人民解放军 32011部队, 北京 100094; 3. 中山大学大气科学学院 广东省气候变化与自然灾害研究重点实验室, 广东 珠海 519082; 4. 南方海洋科学与工程广东省实验室 (珠海), 广东 |
关键词:海洋大气边界层高度 GPS探空 诊断算法 日变化 |
分类号:P732 |
|
出版年·卷·期(页码):2021·38·第六期(64-72) |
摘要:
|
利用南海北部2019年6—7月的船载GPS秒级探空数据,对比研究了5种不同的边界层高度诊断算法在计算海洋大气边界层高度方面的适用性,并利用该数据分析了南海北部海气边界层高度的日变化特征。结果表明:相对湿度梯度法和比湿梯度法诊断的边界层高度普遍偏高,且存在较大的不确定性,气块法、位温梯度法和理查森数法诊断的边界层高度较为合理,且理查森数法诊断结果不确定性最小;南海北部6—7月的平均边界层高度在500~700 m,边界层高度日变化平均约为278 m,总体变化趋势为先升高后降低,每日14时达到最大值。边界层高度的日变化主要受太阳辐射的影响,其变化趋势与海表温度及气温的变化趋势一致;同时,南海季风带来的大量暖湿气流及海洋的特殊环境的原因,海气温差较小,导致海上湍流活动受到抑制,平均边界层高度相对较低,边界层高度日变化较小。 |
As a parameter that characterizes the structure of the atmospheric boundary layer, the boundary layer height is an important indicator in atmospheric numerical simulation and environmental assessment. In this paper, the shipboard GPS second-level sounding data from June to July in 2019 in the northern South China Sea is used to study the applicability of five different boundary layer height diagnosis methods in calculating the marine atmospheric boundary layer height, and to analyze the diurnal variation of the marine atmospheric boundary layer height in the northern South China Sea. The results show that the height of the boundary layer diagnosed by the relative humidity gradient method and the specific humidity gradient method is generally higher with a large uncertainty. The height of the boundary layer diagnosed by the parcel method, the potential temperature gradient method and the Richardson method is more reasonable, and the uncertainty of Richardson method is the least. The average marine atmospheric boundary layer height in the northern South China Sea from June to July is between 500~700 m, and the average diurnal variation of boundary layer height is about 278 m. The marine atmospheric boundary layer height reaches maximum at around 14:00 of the day. The diurnal variation of the boundary layer height is mainly affected by solar radiation, and its variation trend is consistent with that of sea surface temperature and air temperature. Meanwhile, the difference between sea surface temperature and air temperature is small due to the influence of the South China Sea Monsoon and the ocean environment. Therefore, the turbulent activity is suppressed, the average marine atmospheric boundary layer height is relatively low, and the diurnal variation of the boundary layer height is also small. |
参考文献:
|
[1] Stull R B. An introduction to boundary layer meteorology[M]. Dordrecht:Springer, 1988. [2] 孔扬, 张苏平. 基于船载GPS探空数据的黄东海大气边界层高度分析[J]. 中国海洋大学学报, 2014, 44(11):1-10. [3] 涂静, 张苏平, 程相坤, 等. 黄东海大气边界层高度时空变化特征[J]. 中国海洋大学学报, 2012, 42(4):7-18. [4] 张振州, 蔡旭晖, 宋宇, 等. 海南岛地区大气边界层高度的时空变化特征[J]. 北京大学学报(自然科学版), 2013, 49(5):783-790. [5] 李响, 王辉, 吴辉碇, 等. 海上大气边界层数值预报技术发展概论[J]. 海洋预报, 2010, 27(1):72-82. [6] 江丽芳, 尹毅, 刘春霞. 边界层参数化方案对台风"莫拉菲"热力和动力结构特征影响的对比[J]. 海洋预报, 2017, 34(4):20-31. [7] Zhang Q, Zhang J, Qiao J, et al. Relationship of atmospheric boundary layer depth with thermodynamic processes at the land surface in arid regions of China[J]. Science China Earth Sciences, 2011, 54(10):1586-1594. [8] 韩美, 张苏平, 尹跃进, 等. 黄东海大气边界层高度季节变化特征及其成因[J]. 中国海洋大学学报, 2012, 42(S1):34-44. [9] 吴祖常, 董保群. 我国早晨与傍晚的大气边界层厚度研究[J]. 油气田环境保护, 1998, 8(3):31-34. [10] 孟庆珍, 朱炳胜. 重庆市大气混合层厚度的计算和分析[J]. 成都气象学院学报, 1999, 14(2):48-56. [11] Du C L, Liu S Y, Yu X, et al. Urban boundary layer height characteristics and relationship with particulate matter mass concentrations in Xi'an, Central China[J]. Aerosol and Air Quality Research, 2013, 13(5):1598-1607. [12] 宫庆龙, 刁一娜. 冷空气过程对黄海东海区域海洋大气边界层结构影响的个例分析[J]. 海洋气象学报, 2018, 38(1):51-61. [13] 刘超, 花丛, 张恒德, 等. L波段探空雷达秒数据在污染天气边界层分析中的应用[J]. 气象, 2017, 43(5):591-597. [14] 姜杰, 郑有飞, 刘建军, 等. 南京上空大气边界层的激光雷达观测研究[J]. 环境科学与技术, 2014, 37(1):22-27, 80. [15] 廖希伟, 宋小全, 王东祥, 等. 激光云高仪对那曲地区大气边界层高度的探测分析[J]. 光子学报, 2016, 45(5):0501001. [16] 惠小英, 高晓清, 韦志刚, 等. 利用探空气球升速判定敦煌夏季白天边界层高度的分析[J]. 高原气象, 2011, 30(3):614-619. [17] 王存贵, 初奕琦, 檀望舒, 等. 结合激光雷达和探空资料研究青藏高原地区混合层高度特征[J]. 大气科学, 2018, 42(5):1133-1145. [18] 于晓丽, 谢强, 王东晓. 1998年季风爆发期南海大气边界层的日变化[J]. 热带海洋学报, 2009, 28(2):31-35. [19] Guo J P, Miao Y C, Zhang Y, et al. The climatology of planetary boundary layer height in China derived from radiosonde and reanalysis data[J]. Atmospheric Chemistry and Physics, 2016, 16(20):13309-13319. [20] Lavers D A, Beljaars A, Richardson D S, et al. A forecast evaluation of planetary boundary layer height over the ocean[J]. Journal of Geophysical Research:Atmospheres, 2019, 124(9):4975-4984. [21] 刘北平. 确定大气混合层高度方法的研究[J]. 环境科学研究, 1990, 3(1):8-12. [22] 魏浩, 胡明宝, 艾未华. 小波变换在风廓线雷达探测大气边界层高度中的应用研究[J]. 热带气象学报, 2015, 31(6):811-820. [23] 师宇, 胡非, 丁伟宸, 等. 气溶胶激光雷达和无线电探空观测边界层高度的对比分析[J]. 气候与环境研究, 2019, 24(5):650-662. [24] 王琳, 谢晨波, 韩永, 等. 测量大气边界层高度的激光雷达数据反演方法研究[J]. 大气与环境光学学报, 2012, 7(4):241-247. [25] 项衍, 张天舒, 刘建国, 等. 基于激光雷达对WRF模式模拟边界层高度的评估[J]. 中国激光, 2019, 46(1):0110002. [26] Seidel D J, Ao C O, Li K. Estimating climatological planetary boundary layer heights from radiosonde observations:comparison of methods and uncertainty analysis[J]. Journal of Geophysical Research:Atmospheres, 2010, 115(D16):D16113. [27] Shukla K K, Phanikumar D V, Newsom R K, et al. Estimation of the mixing layer height over a high altitude site in Central Himalayan region by using Doppler lidar[J]. Journal of Atmospheric and Solar-Terrestrial Physics, 2014, 109:48-53. [28] 张宏昇, 张小曳, 李倩惠, 等. 大气边界层高度确定及应用研究进展[J]. 气象学报, 2020, 78(3):522-536. [29] Holzworth G C. Estimates of mean maximum mixing depths in the Contiguous United States[J]. Monthly Weather Review, 1964, 92(5):235-242. [30] Ao C O, Waliser D E, Chan S K, et al. Planetary boundary layer heights from GPS radio occultation refractivity and humidity profiles[J]. Journal of Geophysical Research:Atmospheres, 2012, 117(D16):D16117. [31] Sicard M, Pérez C, Rocadenbosch F, et al. Mixed-Layer depth determination in the barcelona coastal area from regular lidar measurements:methods, results and limitations[J]. BoundaryLayer Meteorology, 2006, 119(1):135-157. [32] Seidel D J, Zhang Y H, Beljaars A, et al. Climatology of the planetary boundary layer over the continental United States and Europe[J]. Journal of Geophysical Research:Atmospheres, 2012, 117(D17):D17106. [33] Gu J, Zhang Y H, Yang N, et al. Diurnal variability of the planetary boundary layer height estimated from radiosonde data[J]. Earth and Planetary Physics, 2020, 4(5):479-492. [34] Luo T, Yuan R, Wang Z. Lidar-based remote sensing of atmospheric boundary layer height over land and ocean[J]. Atmospheric Measurement Techniques, 2014, 7(1):173-182. [35] Thorne P W, Parker D E, Christy J R, et al. Uncertainties in climate trends:lessons from upper-air temperature records[J]. Bulletin of the American Meteorological Society, 2005, 86(10):1437-1442. [36] Kuribayashi M, Ohara T, Shimizu A. Temporal variation and vertical structure of the marine atmospheric mixed layer over the East China Sea from Mie-Scattering Lidar Data[J]. SOLA, 2011, 7:189-192. |
服务与反馈:
|
【文章下载】【发表评论】【查看评论】【加入收藏】
|
|
|