台风“利奇马”对渤海风暴潮影响研究 |
作者:李健1 2 3 4 侯一筠1 2 3 5 刘清容4 姜涛6 焦艳4 |
单位:1. 中国科学院海洋研究所, 山东 青岛 266071; 2. 中国科学院海洋环流与波动重点实验室, 山东 青岛 266071; 3. 中国科学院大学, 北京 100049; 4. 国家海洋局北海预报中心, 山东 青岛 266061; 5. 青岛海洋科学与技术试点国家实验室海洋动力过程与气候功能实验室, |
关键词:台风“利奇马” 渤海 台风风暴潮 FVCOM |
分类号:P731.23 |
|
出版年·卷·期(页码):2021·38·第一期(34-42) |
摘要:
|
利用实测资料对比和FVCOM数值模拟等方法,研究了“利奇马”台风风暴潮在渤海的演变规律。研究表明:渤海沿岸的风暴潮过程是由局地风“直接作用”及外部天气系统“间接影响”共同作用引起的,且它们引起的风暴潮时空分布明显不同。在“利奇马”台风风暴潮中,“直接作用”引起的风暴增水在渤海湾和莱州湾沿岸分别约占总风暴增水的2/3和1/2。 |
In this paper, the evolution mechanism of the storm surge caused by typhoon "Likima" in the Bohai Sea is studied based on the in-situ observation data and FVCOM. The results show that the storm surge in the Bohai Sea is jointly caused by direct-effect of local wind and indirect-effect of the marginal weather system with different spatial and temporal distribution. For the storm surge caused by typhoon "Lekima", the direct-effect accounts for 2/3 and 1/2 of the total storm surge in the Bohai Bay and Laizhou Bay, respectively. |
参考文献:
|
[1] Hou Y J, Jiang X W, Liu Y H. China coastal seas under severe sea state:remote sensing and dynamics studies[J]. Chinese Journal of Oceanology and Limnology, 2015, 33(5):1101-1103. [2] Heaps N S. Storm surges, 1967-1982[J]. Geophysical Journal International, 1983, 74(1):331-376. [3] Davies A M, Jones J E. A three-dimensional wind driven circulation model of the Celtic and Irish Seas[J]. Continental Shelf Research, 1992, 12(1):159-188. [4] Jones J E, Davies A M. Storm surge computations for the Irish Sea using a three-dimensional numerical model including wave-current interaction[J]. Continental Shelf Research, 1998, 18(2-4):201-251. [5] 李菁楠, 李响, 张蕴斐, 等. 热带气旋季节预报业务进展[J]. 海洋预报, 2018, 35(6):92-99. [6] 刘清容, 于建生, 韩笑. 风暴潮研究综述及防灾减灾对策[J]. 应用科技, 2009(12):226-227. [7] 吴少华, 王喜年, 尹庆江. 台风风暴潮极值高潮位的统计预报[J]. 海洋预报, 1994, 11(2):69-72. [8] 董剑希, 付翔, 吴玮, 等. 中国海高分辨率业务化风暴潮模式的业务化预报检验[J]. 海洋预报, 2008, 25(2):11-17. [9] Shi F Y, Sun W X. A variable boundary model of storm surge flooding in generalized curvilinear grids[J]. International Journal for Numerical Methods in Fluids, 1995, 21(8):641-651. [10] Shi F Y, Sun W X, Wei G S. A WDM method on a generalized curvilinear grid for calculation of storm surge flooding[J]. Applied Ocean Research, 1997, 19(5-6):275-282. [11] 王秀芹, 钱成春, 王伟. 计算域的选取对风暴潮数值模拟的影响[J]. 青岛海洋大学学报, 2001, 31(3):319-324. [12] 王秀芹, 钱成春, 王伟. 风应力拖曳系数选取对风暴潮数值模拟的影响[J]. 青岛海洋大学学报, 2001, 31(5):640-646. [13] 李健, 侯一筠, 孙瑞. 台风模型风场建立及其模式验证[J]. 海洋科学, 2013, 37(11):95-102. [14] Haigh I D, Wijeratne E M S, MacPherson L R, et al. Estimating present day extreme water level exceedance probabilities around the coastline of Australia:Tides, extra-tropical storm surges and mean sea level[J]. Climate Dynamics, 2014, 42(1-2):121-138. [15] Mo D X, Hou Y J, Li J, et al. Study on the storm surges induced by cold waves in the Northern East China Sea[J]. Journal of Marine Systems, 2016, 160:26-39. [16] Wu L G, Wang B. Assessing impacts of global warming on tropical cyclone tracks[J]. Journal of Climate, 2004, 17(8):1686-1698. [17] 孙密娜, 杨洋, 姜皓严. 影响黄渤海区域两次北上台风的对比分析[J]. 海洋预报, 2018, 35(5):74-84. [18] Chen C S, Liu H D, Beardsley R C. An unstructured grid, finitevolume, three-dimensional, primitive equations ocean model:application to coastal ocean and estuaries[J]. Journal of Atmospheric and Oceanic Technology, 2003, 20(1):159-186. [19] 冯兴如, 杨德周, 尹宝树. FVCOM在龙口海域潮汐潮流模拟中的应用研究[J]. 海洋科学, 2010, 34(6):94-99. [20] Powell M D, Vickery P J, Reinhold T A. Reduced drag coefficient for high wind speeds in tropical cyclones[J]. Nature, 2003, 422(6929):279-283. |
服务与反馈:
|
【文章下载】【发表评论】【查看评论】【加入收藏】
|
|
|