关于黑潮延伸体海域水体的三维热结构时-空变化特征研究 |
作者:邢霄波1 2 3 徐永生1 2 3 贾永君4 黄超1 2 3 |
单位:1. 中国科学院海洋研究所, 山东 青岛 266071; 2. 中国科学院大学, 北京 100049; 3. 青岛海洋科学与技术国家实验室 海洋动力过程与气候功能实验室, 山东 青岛 266237; 4. 国家卫星海洋应用中心, 北京 100081 |
关键词:黑潮延伸体 三维热结构 时-空变化 |
分类号:P731.27 |
|
出版年·卷·期(页码):2021·38·第一期(67-77) |
摘要:
|
基于西北太平洋Argo数据资料,利用参数化方法,从Argo温盐剖面数据中提取出一系列特征动力参数,定量分析黑潮延伸体海域水体的三维热结构的时-空变化特征、季节变化特征及其与地形和环流的关系。结果表明:黑潮延伸体海域水体的海表面温度存在着明显的冬春弱,夏秋强的季节变化特征,冬季平均海表面温度为15℃,夏季则达到了27℃;混合层深度在春季和夏季都较深,在180 m左右,秋冬较浅,在17 m左右,在水平方向上混合层深度有较强的梯度;温跃层春、夏、秋、冬4季的平均温度表现出明显的南北差异,夏季南部海域平均温度为14℃左右,北部海域较低为5℃左右;季节性温跃层深度大约在100 m左右;黑潮延伸体海域水体的温跃层底部最大深度在800 m左右;黑潮延伸体主体海域中心位置冬天在36°N左右,夏天大约移到34°N。 |
Based on the Argo data in the Northwestern Pacific, a series of characteristic dynamic parameters were extracted from the Argo temperature-salt profile data using parameterized methods, and used for quantitative analysis of the Kuroshio extension sea water body three dimensional thermal structure of the space-time variation characteristics. This paper studied the area of three dimensional thermal structure of seasonal variation characteristics and its relationship with topography and the circulation. The results showed that the sea surface temperature of the Kuroshio extension body was characterized by seasonal variations of winter, spring, summer and autumn. The average sea surface temperature was 15℃ in winter and 27℃ in summer. The depth of the mixing layer is deep in spring and summer, about 180 m; in autumn and winter, it is shallow, about 17 m; in the horizontal direction, there is a strong gradient in the depth of the mixing layer. The average temperature scale of the thermocline in spring, summer, autumn and winter shows a significant difference between the north and the south. In summer, the average temperature of the southern sea area is about 14℃, while that of the northern sea area is relatively low at about 5℃. The depth of seasonal thermocline is about 100 m, and the maximum depth of the thermocline bottom is about 800 m in the Kuroshio extension area. The central location of the main body of the Kuroshio extension body is about 36°N in winter and about 34°N in summer. |
参考文献:
|
[1] 王宗山, 马成璞, 邹娥梅. 西太平洋水团特征的年际变化及其与某些气候因子的关系[J]. 黄渤海海洋, 1983, 1(1):33-38. [2] 王晓丹, 钟中, 谭言科, 等. 冬季黑潮延伸体异常增暖对东亚夏季风影响的数值试验[J]. 热带气象学报, 2011, 27(4):569-576. [3] 王喜冬, 韩桂军, 李威, 等. 利用卫星观测海面信息反演三维温度场[J]. 热带海洋学报, 2011, 30(6):10-17. [4] 任惠茹, 康建成, 王甜甜, 等. 东海黑潮热核的时空变化[J]. 海洋地质与第四纪地质, 2008, 28(5):77-84. [5] 张启龙, 蔡榕硕, 齐庆华, 等. 西北太平洋上层热含量的时空变化[J]. 海洋科学进展, 2009, 27(2):121-132. [6] Wu Z Y, Chen H X, Liu N. Relationship between East China Sea Kuroshio and climatic elements in East China[J]. Marine Science Bulletin, 2010, 12(1):1-9. [7] 李宏, 许建平, 刘增宏, 等. 利用逐步订正法构建Argo网格资料集的研究[J]. 海洋通报, 2012, 31(5):502-514. [8] 李宏, 许建平, 刘增宏, 等. 全球海洋Argo网格资料集及其验证[J]. 海洋通报, 2013, 32(6):615-625. [9] 胡凤良, 王丽琼, 左瑞亭, 等. 黑潮延伸体区纬向扰动海温的结构特征及其对系统变异的指示作用分析[J]. 气候与环境研究, 2018, 23(5):551-562. [10] 薛惠芬, 苗春葆, 董明媚, 等. 全球ARGO浮标及其观测资料状况分析[J]. 海洋技术, 2005, 24(4):23-28. [11] 潘丰, 张有广, 林明森. 黑潮延伸体区海平面异常和中尺度涡的时空特征分析[J]. 海洋预报, 2012, 29(5):29-38. [12] Carnes M R, Mitchell J L, De Witt P W. Synthetic temperature profiles derived from Geosat altimetry:comparison with airdropped expendable bathythermograph profiles[J]. Journal of Geophysical Research:Oceans, 1990, 95(C10):17979-17992. [13] Chu P C, Fan C W, Liu W T. Determination of vertical thermal structure from sea surface temperature[J]. Journal of Atmospheric and Oceanic Technology, 2000, 17(7):971-979. [14] Hurlburt H E, Fox D N, Metzger E J. Statistical inference of weakly correlated subthermocline fields from satellite altimeter data[J]. Journal of Geophysical Research:Oceans, 1990, 95(C7):11375-11409. [15] Chu P C, Fralick Jr C R, Haeger S D, et al. A parametric model for the Yellow Sea thermal variability[J]. Journal of Geophysical Research:Oceans, 1997, 102(C5):10499-10507. [16] Chu P C, Fan C W. Exponential leap-forward gradient scheme for determining the isothermal layer depth from profile data[J]. Journal of Oceanography, 2017, 73(4):503-526. [17] Hurlburt H E. The potential for ocean prediction and the role of altimeter data[J]. Marine Geodesy, 1984, 8(1-4):17-66. [18] Thacker W C, Long R B. Fitting dynamics to data[J]. Journal of Geophysical Research:Oceans, 1988, 93(C2):1227-1240. [19] Pascual A, Gomis D. Use of surface data to estimate geostrophic transport[J]. Journal of Atmospheric and Oceanic Technology, 2003, 20(6):912-926. |
服务与反馈:
|
【文章下载】【发表评论】【查看评论】【加入收藏】
|
|
|