机器学习在ENSO预测会商中的应用 |
作者:李晨彤 |
单位:国家海洋环境预报中心, 北京 100081 |
关键词:ENSO 可解释机器学习 多模式 智能会商 |
分类号:P456 |
|
出版年·卷·期(页码):2022·39·第一期(91-103) |
摘要:
|
基于多模式集合预报的思想,利用可解释机器学习方法——决策树算法建立了多模式ENSO预测结果智能会商系统。分别使用基于Boosting的GBDT、XGBoost、lightGBM和基于Bagging的RF 4种决策树模型方法,结合随机搜索交叉验证、网格搜索交叉验证两种超参数调整方法对决策树模型的超参数进行优化调整,根据不同超前预报时效分别建立多模式ENSO预测结果智能会商系统,对多模式预测结果进行集合订正,并给出各模式预测结果在智能会商系统中的特征重要性。该智能会商系统模拟了ENSO预测会商过程,实现了读取各模式预测结果、训练模型、给出预测结论及预测依据、预测结果可视化等流程的自动化,同时实现了智能调参的功能。 |
Bansed on the concept of multi-model ensemble forecasting, this study establishes an intelligent consultation system for multi-model intelligent consultation system of ENSO prediction using the interpretable machine learning method named decision tree algorithm. The hyper parameters of four decision tree models of GBDT based on Boosting, XGBoost, lightGBM and Random Forest (RF) based on Bagging are optimized and adjusted by using two hyper parameter adjustment methods of random search cross-validation and grid search cross-validation. The intelligent consultation system of multi-model ENSO prediction results is established according to different prediction leading time, which makes integrated correction on the multi-model prediction results and provides the feature importance of the prediction result of each model in the intelligent consultation system. The intelligent consultation system simulates the consultation process of ENSO prediction, which realizes the automation of the processes of reading the prediction results of each model, training the model, giving the prediction conclusion and prediction basis and the visualization of the prediction results, and realizes the function of intelligent parameter tuning. The intelligent consultation system collectively revises the multi-modal ENSO prediction results. The results show that machine learning also has some advantages in the multi-modal result consultation, which provide a reference for consultations of ENSO prediction in the future. |
参考文献:
|
[1] 李崇银, 穆穆, 周广庆, 等. ENSO机理及其预测研究[J]. 大气科学, 2008, 32(4):761-781. Li C Y, Mu M, Zhou G Q, et al. Mechanism and prediction studies of the ENSO[J]. Chinese Journal of Atmospheric Sciences, 2008, 32(4):761-781. [2] 丑纪范. 天气和气候的可预报性[J]. 气象科技进展, 2011, 1(2):11-14. Chou J F. Predictability of weather and climate[J]. Advances in Meteorological Science and Technology, 2011, 1(2):11-14. [3] 陶祖钰, 赵翠光, 陈敏. 谈谈统计预报的必要性[J]. 气象科技进展, 2016, 6(1):6-13. Tao Z Y, Zhao C G, Chen M. The necessity of statistical forecasts[J]. Advances in Meteorological Science and Technology, 2016, 6(1):6-13. [4] 许小峰. 从物理模型到智能分析——降低天气预报不确定性的新探索[J]. 气象, 2018, 44(3):341-350. Xu X F. From physical model to intelligent analysis:a new exploration to reduce the uncertainty of weather forecast[J]. Meteorological Monthly, 2018, 44(3):341-350. [5] Jin E K, Kinter Ⅲ J L, Wang B, et al. Current status of ENSO prediction skill in coupled ocean-atmosphere models[J]. Climate Dynamics, 2008, 31(6):647-664. [6] 任福民, 袁媛, 孙丞虎, 等. 近30年ENSO研究进展回顾[J]. 气象科技进展, 2012, 2(3):17-24. Ren F M, Yuan Y, Sun C H, et al. Review of progress of ENSO studies in the past three decades[J]. Advances in Meteorological Science and Technology, 2012, 2(3):17-24. [7] Clarke A J. El Niño physics and El Niño predictability[J]. Annual Review of Marine Science, 2014, 6:79-99. [8] 陈大可, 连涛. 厄尔尼诺-南方涛动研究新进展[J]. 科学通报, 2020, 65(35):4001-4003. Chen D K, Lian T. Frontier of El Nino-southern oscillation research[J]. Chinese Science Bulletin, 2020, 65(35):4001-4003. [9] Barnston A G, Tippett M K, L'Heureux M L, et al. Skill of realtime seasonal ENSO model predictions during 2002-11-is our capability increasing?[J]. Bulletin of the American Meteorological Society, 2012, 93(5):631-651. [10] 陈静, 陈德辉, 颜宏. 集合数值预报发展与研究进展[J]. 应用气象学报, 2002, 13(4):497-507. Chen J, Chen D H, Yan H. A brief review on the development of ensemble prediction system[J]. Journal of Applied Meteorological Science, 2002, 13(4):497-507. [11] Mylne K R, Evans R E, Clark R T. Multi-model multi-analysis ensembles in quasi-operational medium-range forecasting[J]. Quarterly Journal of the Royal Meteorological Society, 2002, 128(579):361-384. [12] 郑飞. ENSO集合预报研究[D]. 北京:中国科学院研究生院(大气物理研究所), 2007. Zheng F. Research on ENSO ensemble prediction[D]. Beijing:Institute of Atmospheric Physics, Chinese Academy of Sciences, 2007. [13] Yan X Q, Tang Y M. An analysis of multi-model ensembles for seasonal climate predictions[J]. Quarterly Journal of the Royal Meteorological Society, 2013, 139(674):1179-1198. [14] 王琳. ENSO的多模式集合预报研究[D]. 成都:成都信息工程大学, 2017. Wang L. Study on ENSO multi-model ensemble predictions with the statistical correction method[D]. Chengdu:Chengdu University of Information Technology, 2017. [15] 郭炜豪, 温文, 王晓春, 等. NINO3.4指数的多模式集合预报方法[J]. 热带气象学报, 2019, 35(2):262-267. Guo W H, Wen W, Wang X C, et al. A multimodel ensemble method for NINO3.4 index forecast[J]. Journal of Tropical Meteorology, 2019, 35(2):262-267. [16] 王琳. 基于多模式集合的季节-年际气候预测方法研究[D]. 武汉:中国地质大学, 2020. Wang L. Study on seasonal to interannual climate prediction with multi-model ensemble method[D]. Wuhan:China University of Geosciences, 2020. [17] 陈溢豪, 张蕴斐, 周倩, 等. 集合预报及其在季节尺度气候预测中的应用[J]. 海洋预报, 2020, 37(6):102-111. Chen Y H, Zhang Y F, Zhou Q, et al. Ensemble forecasting and its application in seasonal climate forecast[J]. Marine Forecasts, 2020, 37(6):102-111. [18] 焦李成, 杨淑媛, 刘芳, 等. 神经网络七十年:回顾与展望[J]. 计算机学报, 2016, 39(8):1697-1717. Jiao L C, Yang S Y, Liu F, et al. Seventy years beyond neural networks:retrospect and prospect[J]. Chinese Journal of Computers, 2016, 39(8):1697-1717. [19] Reichstein M, Camps-Valls G, Stevens B, et al. Deep learning and process understanding for data-driven Earth system science[J]. Nature, 2019, 566(7743):195-204. [20] Sebastian S, Gabriele M. Weather and climate forecasting with neural networks:using general circulation models (GCMs) with different complexity as a study ground[J]. Geoscientific Model Development, 2019, 12(7):2797-2809. [21] Ruti P M, Tarasova O, Keller J H, et al. Advancing research for seamless Earth system prediction[J]. Bulletin of the American Meteorological Society, 2020, 101(1):E23-E35. [22] Wheeling K. Machine learning improves weather and climate models[J]. Eos, 2020, 101, doi:10. 1029/2020EO142422. [23] De Vos M G, Hazeleger W, Bari D, et al. Open weather and climate science in the digital era[J]. Geoscience Communication, 2020, 3(2):191-201. [24] Bauer P, Dueben P D, Hoefler T, et al. The digital revolution of Earth-system science[J]. Nature Computational Science, 2021, 1(2):104-113. [25] 贺圣平, 王会军, 李华, 等. 机器学习的原理及其在气候预测中的潜在应用[J]. 大气科学学报, 2021, 44(1):26-38. He S P, Wang H J, Li H, et al. Machine learning and its potential application to climate prediction[J]. Transactions of Atmospheric Sciences, 2021, 44(1):26-38. [26] Ham Y G, Kim J H, Luo J J. Deep learning for multi-year ENSO forecasts[J]. Nature, 2019, 573(7775):568-572. [27] Zhang Q, Wang H, Dong J Y, et al. Prediction of sea surface temperature using long short-term memory[J]. IEEE Geoscience and Remote Sensing Letters, 2017, 14(10):1745-1749. [28] Aguilar-Martinez S, Hsieh W W. Forecasts of Tropical Pacific Sea Surface temperatures by neural networks and support vector regression[J]. International Journal of Oceanography, 2009, 2009:167239. [29] Feng Q Y, Vasile R, Segond M, et al. ClimateLearn:a machinelearning approach for climate prediction using network measures[J]. Geoentific Model Development Discussions, 2016, doi:10. 5194/gmd-2015-273. [30] Nooteboom P D, Feng Q Y, López C, et al. Using network theory and machine learning to predict El Niño[J]. Earth System Dynamics Discussions, 2018, doi:10. 5194/esd-2018-13. [31] 许柏宁, 姜金荣, 郝卉群, 等. 一种基于区域海表面温度异常预测的ENSO预报深度学习模型[J]. 科研信息化技术与应用, 2017, 8(6):65-76. Xu B N, Jiang J R, Hao H Q, et al. A deep learning model of ENSO prediction based on regional sea surface temperature anomaly prediction[J]. e-Science Technology & Application, 2017, 8(6):65-76. [32] 何丹丹, 姜金荣, 郝卉群, 等. 基于深度学习的ENSO预报方法研究[J]. 科研信息化技术与应用, 2019, 10(1):38-47. He D D, Jiang J R, Hao H Q, et al. Research on ENSO forecasting method based on deep learning[J]. e-science Technology & Application, 2019, 10(1):38-47. [33] 蒋国荣, 张韧, 沙文钰. 用EOF展开和人工神经网络方法预测ENSO的研究[J]. 海洋预报, 2001, 18(3):1-11. Jiang G R, Zhang R, Sha W Y, et al. The study of forecasting ENSO by using EOF appsoach and neural network method[J]. Marine Forecasts, 2001, 18(3):1-11. [34] Dijkstra H A, Petersik P, Hernández-García E, et al. The application of machine learning techniques to improve El Niño prediction skill[J]. Frontiers in Physics, 2019, 7:153. [35] Breiman L. Random forests[J]. Machine Learning, 2001, 45(1):5- 32. [36] Quinlan R J. Induction of decision trees[J]. Machine Learning, 1986, 1(1):81-106. [37] Dietterich T G. An experimental comparison of three methods for constructing ensembles of decision trees:bagging, boosting, and randomization[J]. Machine Learning, 2000, 40(2):139-157. [38] Friedman J H. Greedy function approximation:a gradient boosting machine[J]. The Annals of Statistics, 2001, 29(5):1189-1232. [39] Chen T Q, Guestrin C. XGBoost:a scalable tree boosting system[C]//Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. San Francisco, California, USA:ACM, 2016. [40] Ke G L, Meng Q, Finley T, et al. LightGBM:a highly efficient gradient boosting decision tree[C]//Proceedings of the 31st International Conference on Neural Information Processing Systems. Long Beach, CA, USA:ACM, 2017:3149-3157. [41] Liaw A, Wiener M. Classification and Regression by random Forest[J]. R News, 2002, 2(3):18-22. [42] Ren H L, Zheng F, Luo J J, et al. A review of research on tropical Air-Sea interaction, ENSO dynamics, and ENSO prediction in China[J]. Journal of Meteorological Research, 2020, 34(1):43-62. |
服务与反馈:
|
【文章下载】【发表评论】【查看评论】【加入收藏】
|
|
|