基于GOCI的长江口及附近海域主要营养盐的分布与日内变化研究 |
作者:李阳东1 2 3 4 卢灿灿1 李鸿莉5 常亮1 林军5 沈敏5 |
单位:1. 上海海洋大学 海洋科学学院, 上海 201306; 2. 农业农村部大洋渔业开发重点实验室, 上海 201306; 3. 大洋渔业资源可持续开发教育部重点实验室, 上海 201306; 4. 上海市河口海洋测绘工程技术研究中心, 上海 201306; 5. 上海海洋大学 海洋生态与环境学院, 上海 2 |
关键词:GOCI 长江口 营养盐 反演模型 日内变化 |
分类号:X145 |
|
出版年·卷·期(页码):2022·39·第二期(1-13) |
摘要:
|
对表层水体硝酸盐、磷酸盐和硅酸盐浓度之间的相关性进行分析,利用GOCI影像与实测表层水体的营养盐浓度(包括磷酸盐和硅酸盐)建立长江口及附近海域的表层水体营养盐遥感反演模型,并利用实测数据和营养盐之间的相关关系对反演模型进行验证。验证结果表明:磷酸盐和硅酸盐反演模型的平均绝对百分比误差分别是21.65%和6.73%。将建立的营养盐反演模型应用于GOCI影像进行表层水体营养盐日内变化的研究,结果显示:整个长江口及附近海域表层水体磷酸盐和硅酸盐浓度的分布呈现出由近岸向外海递减的趋势,且在苏北浅滩、长江口及杭州湾出现明显的高值区;长江口及附近海域表层磷酸盐和硅酸盐浓度日变化明显,其中杭州湾和长江口外南部营养盐受潮汐影响显著,即在涨潮时表层水体营养盐浓度降低,在落潮时浓度升高,长江口外北部海域营养盐浓度波动较大。 |
fIn this paper, the correlation between nitrate, phosphate and silicate concentrations in the surface water is firstly analyzed, and then the remote sensing inversion models of nutrients in the surface layer of the Yangtze River Estuary and its adjacent waters is established by using GOCI images and in-situ nutrient concentrations (including phosphate and silicate). The inversion models are verified by using the in-situ data and the correlation between the in-situ nutrients. The verification results show that the mean absolute percentage errors of the phosphate and silicate inversion models are 21.65% and 6.73%, respectively. Then the established nutrient inversion models are applied to GOCI images to study the diurnal variations of nutrients in the surface water. The results demonstrate that the distribution of phosphate and silicate concentrations in the surface waters of the Yangtze River Estuary and its adjacent waters show a decreasing trend from the nearshore to the offshore. In addition, obvious high-value areas locate in the Subei shoals, the Yangtze River Estuary and Hangzhou Bay. The diurnal variations of phosphate and silicate concentrations is significant in the surface layer of the Yangtze River Estuary and its adjacent waters. The nutrients are significantly affected by tides in the Hangzhou Bay and the southern part of the Yangtze River Estuary. The nutrient concentration in surface water decreases at high tide and increases at low tide. The nutrient concentration in the north off the Yangtze River Estuary fluctuates greatly. |
参考文献:
|
[1] 唐启升, 苏纪兰, 孙松, 等. 中国近海生态系统动力学研究进展[J]. 地球科学进展, 2005, 20(12): 1288-1299. Tang Q S, Su J L, Sun S, et al. A study of marine ecosystem dynamics in the coastal ocean of China[J]. Advance in Earth Sciences, 2005, 20(12): 1288-1299. [2] Alcântara E H, Stech J L, Lorenzzetti J A, et al. Remote sensing of water surface temperature and heat flux over a tropical hydroelectric reservoir[J]. Remote Sensing of Environment, 2010, 114(11): 2651-2665. [3] Tyler A N, Svab E, Preston T, et al. Remote sensing of the water quality of shallow lakes: a mixture modelling approach to quantifying phytoplankton in water characterized by highsuspended sediment[J]. International Journal of Remote Sensing, 2006, 27(8): 1521-1537. [4] Tebbs E J, Remedios J J, Harper D M. Remote sensing of chlorophyll-a as a measure of cyanobacterial biomass in Lake Bogoria, a hypertrophic, saline – alkaline, flamingo lake, using Landsat ETM+[J]. Remote Sensing of Environment, 2013, 135: 92- 106. [5] Olmanson L G, Bauer M E, Brezonik P L. A 20-year Landsat water clarity census of Minnesota's 10, 000 lakes[J]. Remote Sensing of Environment, 2008, 112(11): 4086-4097. [6] Zhou W, Wang S, Zhou Y, et al. Mapping the concentrations of total suspended matter in Lake Taihu, China, using Landsat-5 TM data [J]. International Journal of Remote Sensing, 2006, 27(6): 1177- 1191. [7] Song K S, Li L, Wang Z M, et al. Retrieval of total suspended matter (TSM) and chlorophyll-a (Chl-a) concentration from remotesensing data for drinking water resources[J]. Environmental Monitoring and Assessment, 2012, 184(3): 1449-1470. [8] Chen S S, Han L S, Chen X Z, et al. Estimating wide range Total Suspended Solids concentrations from MODIS 250-m imageries: an improved method[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2015, 99: 58-69. [9] 张鸿键, 杨波, 李德平, 等. 基于MODIS影像的洞庭湖枯水期总磷营养状况监测研究[J]. 水资源与水工程学报, 2014, 25(3): 62- 67. Zhang H J, Yang B, Li D P, et al. Research on monitoring total phosphorus nutritional status of Dongting lake based on MODIS image[J]. Journal of Water Resources and Water Engineering, 2014, 25(3): 62-67. [10] Xu Y, Zhang Y, Zhang D. Retrieval of dissolved inorganic nitrogen from multi-temporal MODIS data in Haizhou Bay[J]. Marine Geodesy, 2010, 33(1): 1-15. [11] Isenstein E M, Park M H. Assessment of nutrient distributions in Lake Champlain using satellite remote sensing[J]. Journal of Environmental Sciences, 2014, 26(9): 1831-1836. [12] Gao Y N, Gao J F, Yin H B, et al. Remote sensing estimation of the total phosphorus concentration in a large lake using band combinations and regional multivariate statistical modeling techniques[J]. Journal of Environmental Management, 2015, 151: 33-43. [13] Xiong J F, Lin C, Ma R H, et al. Remote sensing estimation of lake total phosphorus concentration based on MODIS: a case study of lake Hongze[J]. Remote Sensing, 2019, 11(17): 2068. [14] 李小斌, 陈楚群, 施平, 等. 珠江口海域总无机氮的遥感提取研究[J]. 环境科学学报, 2007, 27(2): 313-318. Li X B, Chen C Q, Shi P, et al. Retrieval of total inorganic nitrogen concentration in pearl river estuary by remote sensing[J]. Acta Scientiae Circumstantiae, 2007, 27(2): 313-318. [15] Chang N B, Xuan Z M, Yang Y J. Exploring spatiotemporal patterns of phosphorus concentrations in a coastal bay with MODIS images and machine learning models[J]. Remote Sensing of Environment, 2013, 134: 100-110. [16] 王林, 赵冬至, 杨建洪. 基于环境一号卫星的大洋河河口海域营养盐遥感反演[J]. 中国环境科学, 2012, 32(1): 136-141. Wang L, Zhao D Z, Yang J H. Nutrients retrieval in the Dayang River Estuary based on HJ-1 satellite remote-sensed imagery[J]. China Environmental Science, 2012, 32(1): 136-141. [17] Yu X, Yi H P, Liu X Y, et al. Remote-sensing estimation of dissolved inorganic nitrogen concentration in the Bohai Sea using band combinations derived from MODIS data[J]. International Journal of Remote Sensing, 2016, 37(2): 327-340. [18] 周名江, 颜天, 邹景忠. 长江口邻近海域赤潮发生区基本特征初探[J]. 应用生态学报, 2003, 14(7): 1031-1038. Zhou M J, Yan T, Zou J Z. Preliminary analysis of the characteristics of red tide areas in Changjiang River estuary and its adjacent sea[J]. Chinese Journal of Applied Ecology, 2003, 14(7): 1031-1038. [19] 朱建荣, 王金辉, 沈焕庭, 等. 2003年 6月中下旬长江口外海区冲淡水和赤潮的观测及分析[J]. 科学通报, 2005, 50(1): 59-65. Zhu J R, Wang J H, Shen H T, et al. Observation and analysis of the diluted water and red tide in the sea off the Changjiang River mouth in middle and late June 2003[J]. Chinese Science Bulletin, 2005, 50(1): 59-65. [20] 李峥, 沈志良, 周淑青, 等. 长江口及其邻近海域磷的分布变化特征[J]. 海洋科学, 2007, 31(1): 28-36, 42. Li Z, Shen Z L, Zhou S Q, et al. Distributions and variations of phosphorus in the Changjiang estuary and its adjacent sea areas [J]. Marine Sciences, 2007, 31(1): 28-36, 42. [21] 叶然, 刘艳云, 崔永平, 等. 东海营养盐结构的时空分布及其对浮游植物的限制[J]. 海洋与湖沼, 2015, 46(2): 311-320. Ye R, Liu Y Y, Cui Y P, et al. Temporal and spatial distributions of nutrient structure and limitation on phytoplankton in the east China sea[J]. Oceanologia et Limnologia Sinica, 2015, 46(2): 311- 320. [22] Wang B D, Wang X L, Zhan R. Nutrient conditions in the Yellow Sea and the East China Sea[J]. Estuarine, Coastal and Shelf Science, 2003, 58(1): 127-136. [23] 叶林安, 王莉波, 江志法, 等. 2015年东海区营养盐的分布变化特征[J]. 上海海洋大学学报, 2017, 26(3): 432-439. Ye L A, Wang L B, Jiang Z F, et al. Seasonal variations of distribution characteristics of nutrients in the East China Sea in 2015[J]. Journal of Shanghai Ocean University, 2017, 26(3): 432- 439. [24] 孙璐, 蒋锦刚, 朱渭宁. 基于GOCI影像的长江口及其邻近海域CDOM遥感反演及其日内变化研究[J]. 海洋学报, 2017, 39(9): 133-145. Sun L, Jiang J G, Zhu W N. Remote sensing inversion and daily variation of CDOM based on GOCI in the Changjiang Estuary and adjacent waters[J]. Haiyang Xuebao, 2017, 39(9): 133-145. [25] Du C G, Li Y M, Wang Q, et al. Tempo-spatial dynamics of water quality and its response to river flow in estuary of Taihu Lake based on GOCI imagery[J]. Environmental Science and Pollution Research, 2017, 24(36): 28079-28101. [26] 包颖, 田庆久, 陈旻, 等. 基于GOCI影像分类的太湖水体叶绿素a浓度日变化分析[J]. 光谱学与光谱分析, 2016, 36(8): 2562- 2567. Bao Y, Tian Q J, Chen M, et al. Analysis on diurnal variation of chlorophyll-a concentration of Taihu lake based on optical classification with GOCI data[J]. Spectroscopy and Spectral Analysis, 2016, 36(8): 2562-2567. [27] 冯士筰, 李凤岐, 李少菁. 海洋科学导论[M]. 北京: 高等教育出版社, 1999: 422-434. Feng S Z, Li F Q, Li S J. An introduction to marine science[M]. Beijing: Higher Education Press, 1999: 422-434. [28] 洪华生. 中国区域海洋学—化学海洋学[M]. 北京: 海洋出版社, 2012: 171-217. Hong H S. Regional oceanography of China seas[M]. Beijing: China Ocean Press, 2012: 171-217. [29] 孙霞, 王保栋, 王修林, 等. 东海赤潮高发区营养盐时空分布特征及其控制要素[J]. 海洋科学, 2004, 28(8): 28-32. Sun X, Wang B D, Wang X L, et al. Spatial and temporal distribution of the nutrients and its controlling factors in the high - frequency HAB occurrence area in the East China Sea[J]. Marine Sciences, 2004, 28(8): 28-32. [30] Grasshoff K, Kremling K, Ehrhardt M. Methods of Seawater Analysis[M]. Weinheim: Wiley-VCH, 1999: 203-223. [31] Ahn J H, Park Y J, Ryu J H, et al. Development of atmospheric correction algorithm for Geostationary Ocean Color Imager (GOCI)[J]. Ocean Science Journal, 2012, 47(3): 247-259. [32] Lee B, Ahn J H, Park Y J, et al. Turbid water atmospheric correction for GOCI: modification of MUMM algorithm[J]. Korean Journal of Remote Sensing, 2013, 29(2): 173-182. [33] Cui T W, Zhang J, Groom S, et al. Validation of MERIS oceancolor products in the Bohai Sea: a case study for turbid coastal waters[J]. Remote Sensing of Environment, 2010, 114(10): 2326- 2336. [34] 高学鲁, 宋金明. 2003年 5月长江口内外溶解态无机氮、磷、硅的空间分布及日变化[J]. 海洋与湖沼, 2007, 38(5): 420-431. Gao X L, Song J M. The concentrations of dissolved inorganic nitrogen, phosphorus and silicon in the Changjiang (Yangtze) river estuary in 2003[J]. Oceanologia et Limnologia Sinica, 2007, 38(5): 420-431. [35] Beardsley R C, Limeburner R, Yu H, et al. Discharge of the Changjiang (Yangtze River) into the East China Sea[J]. Continental Shelf Research, 1985, 4(1-2): 57-76. [36] 朱建荣, 沈焕庭. 长江冲淡水扩展机制[M]. 上海: 华东师范大学出版社, 1997: 18-176. Zhu J R, Shen H T. The mechanism of the expansion of the Changjiang (Yangtze river) diluted water[M]. Shanghai: East China Normal University Press, 1997: 18-176. [37] 董明帆, 杨福霞, 简慧敏, 等. 苏北浅滩绿潮爆发早期营养盐的水平分布[J]. 中国海洋大学学报(自然科学版), 2018, 48(11): 93-99. Dong M F, Yang F X, Jian H M, et al. The saptial distribution of nutrients in Subei Shoal on the early stage of green tide[J]. Periodical of Ocean University of China, 2018, 48(11): 93-99. [38] 王凯敏, 熊学军, 郭炳火, 等. 2006—2007年长江冲淡水的扩展形态及季节变化[J]. 海岸工程, 2012, 31(1): 46-54. Wang K M, Xiong X J, Guo B H, et al. The extension form and seasonal variation of the Changjiang diluted water during 2006- 2007[J]. Coastal Engineering, 2012, 31(1): 46-54. [39] 方涛, 李道季, 孔定江, 等. 夏秋季长江口及毗邻海域N、P营养盐分布及其潮汐变化[J]. 海洋环境科学, 2008, 27(5): 437-442. Fang T, Li D J, Kong D J, et al. Distribution of nitrate and phosphate and tidal variation in Changjiang estuary and its adjacent sea in summer and autumn[J]. Marine Environmental Science, 2008, 27(5): 437-442. [40] 宫英龙, 张亮亮, 范飞. 江苏海域波浪分布特征研究[J]. 水运工程, 2014(8): 33-40. Gong Y L, Zhang L L, Fan F. On distribution characteristics of wave climate in Jiangsu sea[J]. Port & Waterway Engineering, 2014(8): 33-40. |
服务与反馈:
|
【文章下载】【发表评论】【查看评论】【加入收藏】
|
|
|