摘要:
|
利用基于深度学习的多隐层结构的时空序列预测神经网络,对风-浪实况大数据进行信息挖掘并构建智能预报模型,推理大洋-海域尺度非平稳态浪场时空演化过程,并在业务应用中与数值模型进行对比。结果表明:大数据驱动的智能预报的精度与数值预报相当;费效比比数值预报降低近700倍;业务流程与数值预报几乎一致,便于改造系统;业务应用情景比数值预报更广泛。此外,高效灵活的智能预报技术与新型计算设备相结合,可使海浪预报从业务中心进一步下沉到新兴的涉海行业实体中。 |
The spatiotemporal sequence prediction neural network with multiple hidden layer structure based on deep learning is used to mine the historical wind-wave big data, and to deduce the spatiotemporal evolution process of unsteady wave field from open ocean to regional sea scale, which is compared with the application of numerical model in operation. The results show that the accuracy of intelligent prediction driven by big data is nearly equivalent to that of numerical prediction and the cost-efficiency ratio is nearly 700 times lower than that of numerical prediction. Moreover, the operational process is consistent with the numerical prediction, which is convenient for system transformation. Therefore, operational application scenarios of intelligent prediction are broader than those of numerical prediction. In addition, the combination of efficient and flexible intelligent prediction technology and new computing equipment can make the wave prediction possible in marine-related industry entities beside that in the operational centers. |
参考文献:
|
[1] World Meteorological Organization. Guide to wave analysis and forecasting[Z]. WMO, 2020. [2] LEBLOND P H. Dynamics and modelling of ocean waves G. J. Komen, L. Cavaleri, M. Donelan, K. Hasselmann, S. Hasselmann, and P. A. E. M. Janssen, 1994. Cambridge University Press, Cambridge, U.K. Hardcover, XXI +532 pp. Price:£40.00. ISBN 0-521-47047-1[J]. Earth-Science Reviews, 1995, 39(1-2):111-113. [3] 国务院.国务院关于印发2030年前碳达峰行动方案的通知[J].中华人民共和国国务院公报, 2021(31):48-58. The State Council. Circular of the State Council on printing and issuing the action plan for carbon dioxide peaking before 2030[J]. Gazette of the State Council of the People's Republic of China, 2021(31):48-58. [4] 国家能源局.国家能源局关于2021年风电、光伏发电开发建设有关事项的通知[J].电力设备管理, 2021(5):16, 22. National Energy Administration. Notice of the National Energy Administration on matters related to the development and construction of wind power and photovoltaic power generation in 2021[J]. Electric Power Equipment Management, 2021(5):16, 22. [5] 国家能源局. NB/T 10393-2020, 海上风电场工程施工安全技术规范[S].北京:中国水利水电出版社, 2020. National Energy Administration. NB/T 10393-2020 Technical code for construction safety of offshore wind power project[S]. Beijing:China Water & Power Press, 2020. [6] JAMES S C, ZHANG Y S, O'DONNCHA F. A machine learning framework to forecast wave conditions[J]. Coastal Engineering, 2018, 137:1-10. [7] ZHOU S Y, XIE W H, LU Y X, et al. ConvLSTM-based wave forecasts in the South and East China Seas[J]. Frontiers in Marine Science, 2021, 8:680079. [8] LIU X, GAO Z Y, HOU F. Learning the spatiotemporal evolution law of wave field based on convolutional neural network[J]. Journal of Ocean University of China, 2021. [9] PIERSON W J JR, NEUMANN J G, JAMES R W. Practical methods for observing and forecasting Ocean waves by means of wave spectra and statistics[M]. Washington D C:University of California Libraries, 1955:284. [10] BRETSCHNEIDER C L. Wave variability and wave spectra for wind generated gravity waves[D]. Texas:Texas A & M University, 1959. [11] WILSON B W. Numerical prediction of ocean waves in the North Atlantic for December, 1959[J]. Deutsche Hydrografische Zeitschrift, 1965, 18(3):114-130. [12] 关孟儒.台风波浪推算方法的探讨[J].华东水利学院学报, 1981(2):17-36. GUAN M R. A discussion on the calculation method of typhoon waves[J]. Journal of East China Technical University of Water Resources, 1981(2):17-36. [13] 刘凡, 陆小敏, 徐丹, 等.海浪预报方法研究进展[J].河海大学学报(自然科学版), 2021, 49(5):387-393. LIU F, LU X M, XU D, et al. Research progress of ocean waves forecasting method[J]. Journal of Hohai University (Natural Sciences), 2021, 49(5):387-393. [14] TSYPLUKHIN V F, KHASKHACHIKH G D, SAMARIN V G. U.S. Army coastal engineering research center[J]. Hydrotechnical Construction, 1971, 5(9):860-863. [15] GRÖEN P, DORRESTEIN R. Zeegolven, Opstellen op oceanografisch en maritiem meteorologisch gebied[Z]. KNMI, 1976. [16] PHILLIPS O M. The equilibrium range in the spectrum of windgenerated waves[J]. Journal of Fluid Mechanics, 1958, 4(4):426-434. [17] PHILLIPS O M. On the generation of waves by turbulent wind[J]. Journal of Fluid Mechanics, 1957, 2(5):417-445. [18] GELCI R. Prevision de la houle. La methode des densites spectroangulaires[J]. Bull. Inform. Comite Central Oceanogr. d'Etude Cotes, 1957, 9:416-435. [19] HASSELMANN K. Grundgleichungen der Seegangsvoraussage[J]. Schiffstechnik, 1960, 7:191-195. [20] HASSELMANN K. On the non-linear energy transfer in a gravitywave spectrum Part 1. General theory[J]. Journal of Fluid Mechanics, 1962, 12(4):481-500. [21] PIERSON W J. The Spectral Ocean Wave Model (SOWM), a northern hemisphere computer model for specifying and forecasting ocean Wave Spectra[M]. Asheville:U. S. Naval Oceanography Command Detachment, 1982:1-203. [22] 许富祥, 许林之.海浪预报方法综述(二)[J].海洋预报, 1989, 6(4):50-58. XU F X, XU L Z. A survey of wave forecasting methods (2)[J]. Marine Forecasts, 1989, 6(4):50-58. [23] WEN S C, ZHANG D C, CHEN B H, et al. A hybrid model for numerical wave forecasting and its implementation -Ⅰ. The wind wave model[J]. Acta Oceanologica Sinica, 1989, 8(1):1-14. [24] The Wamdi Group. The WAM model-A third generation ocean wave prediction model[J]. Journal of Physical Oceanography, 1988, 18(12):1775-1810. [25] 袁业立, 潘增弟, 华锋, 等. LAGFD-WAM海浪数值模式-I:基本物理模型[J].海洋学报, 1992, 14(5):1-7. YUAN Y L, PAN Z D, HUA F, et al. LAGFD-WAM ocean wave numerical model-I:physical model[J]. Acta Oceanologica Sinica, 1992, 14(5):1-7. [26] 袁业立, 华锋, 潘增弟, 等. LAGFD-WAM海浪数值模式-II.区域性特征线嵌入格式及其应用[J].海洋学报, 1992, 14(6):12-24. YUAN Y L, HUA F, PAN Z D, et al. LAGFD-WAM ocean wave numerical model-II:regional characteristics[J]. Acta Oceanologica Sinica, 1992, 14(6):12-24. [27] TOLMAN H L, BALASUBRAMANIYAN B, BURROUGHS L D, et al. Development and implementation of wind-generated ocean surface wave modelsat NCEP[J]. Weather and Forecasting, 2002, 17(2):311-333. [28] BOOIJ N, RIS R C, HOLTHUIJSEN L H. A third-generation wave model for coastal regions:1. Model description and validation[J]. Journal of Geophysical Research:Atmospheres, 1999, 104(4):7649-7666. [29] 管长龙.我国海浪理论及预报研究的回顾与展望[J].青岛海洋大学学报(自然科学版), 2000, 30(4):549-556. GUAN C L. A review of history and prospect for Study of sea wave theory and its forecast in China[J]. Journal of Ocean University of Qingdao, 2000, 30(4):549-556. [30] The WISE Group, CAVALERI L, ALVES J H G M, et al. Wave modelling-the state of the art[J]. Progress in Oceanography, 2007, 75(4):603-674. [31] 齐义泉, 张志旭, 李志伟, 等.人工神经网络在海浪数值预报中的应用[J].水科学进展, 2005, 16(1):32-35. QI Y Q, ZHANG Z X, LI Z W, et al. Application of artificial neural network to numerical wave prediction[J]. Advances in Water Science, 2005, 16(1):32-35. [32] 王华, 姚圣康, 龚茂珣, 等.东海区域灾害性海浪长期预测方法研究[J].海洋通报, 2007, 26(5):35-42. WANG H, YAO S K, GONG M S, et al. Study on the long-term predicting way of disastrous sea wave of East China Sea[J]. Marine Science Bulletin, 2007, 26(5):35-42. [33] SINHA M, RAO A D, BASU S. Forecasting space-time variability of wave heights in the Bay of Bengal:a genetic algorithm approach[J]. Journal of Oceanography, 2013, 69(1):117-128. [34] FAN S T, XIAO N H, DONG S. A novel model to predict significant wave height based on long short-term memory network[J]. Ocean Engineering, 2020, 205:107298. [35] LI M, LIU K F. Probabilistic prediction of significant wave height using dynamic Bayesian network and information flow[J]. Water, 2020, 12(8):2075. [36] BAI G, WANG Z F, ZHU X Y, et al. Development of a 2-D deep learning regional wave field forecast model based on convolutional neural network and the application in South China Sea[J]. Applied Ocean Research, 2022, 118:103012. [37] LIU Q X, ROGERS W E, BABANIN A V, et al. Observationbased source terms in the third-generation wave model WAVEWATCH III:updates and verification[J]. Journal of Physical Oceanography, 2019, 49(2):489-517. [38] TAYLOR K E. Summarizing multiple aspects of model performance in a single diagram[J]. Journal of Geophysical Research:Atmospheres, 2001, 106(D7):7183-7192. |
服务与反馈:
|
【文章下载】【发表评论】【查看评论】【加入收藏】
|
|
|