漂浮式激光雷达海上测风可靠性及影响因素研究 |
作者:王浩1 2 易侃1 2 杜梦蛟2 薛洋洋1 顾晨3 王彩霞4 禹智斌5 张秀芝6 |
单位:1. 中国三峡新能源(集团)股份有限公司, 北京 101149; 2. 中国长江三峡集团有限公司科学技术研究院, 北京 100038; 3. 上海勘测设计研究院有限公司, 上海 200434; 4. 青岛华航环境科技有限责任公司, 山东 青岛 266041; 5. 哈尔滨工业大学(深圳), 广东 深圳 518055; |
关键词:漂浮式激光雷达 可靠性 影响因素 偏差 |
分类号:P714+.2 |
|
出版年·卷·期(页码):2022·39·第五期(70-83) |
摘要:
|
基于漂浮式激光雷达与海上固定式测风塔同期的测风数据对比,分析了漂浮式激光雷达海上测风的可靠性和潜在的误差来源。结果表明:在对比观测期间,漂浮式激光雷达在150 m及以下各个测量高度层的数据获取完整率均超过98%。在100 m以下各测量高度层,漂浮式激光雷达观测的10 min平均风速、极大风速和平均风向与固定式测风塔测量结果基本一致,可决系数均超过0.98,平均相对偏差均在7%以内,其中,10 min平均风速和风向的平均绝对偏差分别在0.5 m/s和5°以内。漂浮式激光雷达湍流强度的测量偏差较为明显,主要集中在风速为3 m/s以下的低风速区,平均绝对偏差在0.012~0.014之间。进一步研究表明,在降雨期间漂浮式激光雷达的测量精度可能会受到一定影响,而对测量高度、中高风速段不同风速大小和波浪高度等要素的影响并不明显。 |
Using the simultaneous wind measurement results from the floating lidar systems (FLS) and offshore meteorological mast, this paper analyzes the reliability and potential error sources of the FLS for offshore wind measurement. The results show that, during the observation period for comparison, the integrity rate of the measured data of the FLS exceeds 98% at each measurement height under 150m. The FLS measured mean wind speed, maximum wind speed and mean wind direction at different measurement heights under 100m are basically consistent with those measured by the meteorological mast with the correlation coefficient R2 over 0.98 and the mean relative errors (MREs) less than 7%. The MAE of mean wind speed and wind direction are less than 0.5 m/s and 3°, respectively. The MAE of turbulence intensity measured by FLS is relatively large, which is mainly concentrated in the low wind speed region below 3m/s with the MAE between 0.012 and 0.014. The deviations between them is mainly periods. Further study shows that the accuracy of the FLS is potentially affected during the raining time, while the influences of measurement height, different wind speed with medium and high magnitude and wave height are insignificant. |
参考文献:
|
[1] 徐晖."十四五"进入新能源高质量发展新阶段[J].电器工业, 2021(3):1. XU H. ‘The 14th Five-Year Plan’ steps into a new stage for highquality development of new energies[J]. China Electrical Equipment Industry, 2021(3):1. [2] 易侃, 张子良, 张皓, 等.海上风能资源评估数值模拟技术现状及发展趋势[J].分布式能源, 2021, 6(1):1-6. YI K, ZHANG Z L, ZHANG H, et al. Technical status and development trends of numerical modeling for offshore wind resource assessment[J]. Distributed Energy, 2021, 6(1):1-6. [3] 王秀强.朝阳之晖, 与时并明——2020年中国风电行业回顾与展望[J].能源, 2021(2):60-65. WANG X Q. The rising sun shining with time-review and prospect of China's wind power industry in 2020[J]. Energy, 2021(2):60-65. [4] 张德.风能资源数值模拟及其在中国风能资源评估中的应用研究[D].兰州:兰州大学, 2009. ZHANG D. Study on wind energy numerical simulation and its application to wind energy resources assessment in China[D]. Lanzhou:Lanzhou University, 2009. [5] 李正泉, 宋丽莉, 马浩, 等.海上风能资源观测与评估研究进展[J].地球科学进展, 2016, 31(8):800-810. LI Z Q, SONG L L, MA H, et al. Review of methodologies for offshore wind resource observation and assessment[J]. Advances in Earth Science, 2016, 31(8):800-810. [6] COURTNEY M S, HASAGER C B. Remote sensing technologies for measuring offshore wind[M]//NG C, RAN L. Offshore Wind Farms:Technologies, Design and Operation. Amsterdam:Elsevier, 2016:59-82. [7] 王强, 王通, 路继宁. Fraunhofer漂浮式雷达与固定式测风塔测试阶段结果对比[J].海岸工程, 2020, 39(2):130-141.WANG Q, WANG T, LU J N. Comparison of the data measured by Fraunhofer IWES buoy and fixed wind tower in testing stage[J]. Coastal Engineering, 2020, 39(2):130-141. [8] 崔东岭, 摆念宗.海上风电与陆上风电差异性分析(上)[J].风能, 2019(5):74-76. CUI D L, BAI N Z. Study on the diversity between offshore and onshore wind power (Part I)[J]. Wind Energy, 2019(5):74-76. [9] 孙稚权, 项杰, 管玉平.基于ERA-interim资料中国近海风能资源时空分布[J].海洋预报, 2016, 33(3):50-56. SUN Z Q, XIANG J, GUAN Y P. Wind energy in the offshore areas of China based on ERA-interim reanalysis data[J]. Marine Forecasts, 2016, 33(3):50-56. [10] 高成志, 郑崇伟, 陈璇.基于CCMP风场的中国近海风能资源的长期变化分析[J].海洋预报, 2017, 34(5):27-35. GAO C Z, ZHENG C W, CHEN X. Long-term trend analysis of wind energy resource in the China Sea and adjacent waters based on the CCMP wind data[J]. Marine Forecasts, 2017, 34(5):27-35. [11] 黄小祥, 陶英佳, 官明开.海上风电漂浮式激光雷达测风发展研究[J].中国水运(下半月), 2019, 19(10):57-58. HUANG X X, TAO Y J, GUAN M K. Study on the development of the wind measurement using floating lidar in offshore wind power[J]. China Water Transport, 2019, 19(10):57-58. [12] HSUAN C Y, TASI Y S, KE J H, et al. Validation and measurements of floating LiDAR for nearshore wind resource assessment application[J]. Energy Procedia, 2014, 61:1699-1702. [13] 薛洋洋.新型组合式FLiDAR浮标设计及运动响应研究[D].镇江:江苏科技大学, 2017. XUE Y Y. Concept design and investigation on motion performance of an Innovative triple-hull-combined FLiDAR buoy[D]. Zhenjiang:Jiangsu University of Science and Technology, 2017. [14] GOTTSCHALL J, GRIBBEN B, STEIN D, et al. Floating lidar as an advanced offshore wind speed measurement technique:current technology status and gap analysis in regard to full maturity[J]. WIREs Energy and Environment, 2017, 6(5):e250. [15] 魏天问, 夏海云.基于相干多普勒激光雷达的风雨同时探测[J].红外与激光工程, 2020, 49(S2):208-212. WEI T W, XIA H Y. Simultaneous wind and rainfall detection using coherent Doppler lidar[J]. Infrared and Laser Engineering, 2020, 49(S2):208-212. [16] WEI T W, XIA H Y, HU J J, et al. Simultaneous wind and rainfall detection by power spectrum analysis using a VAD scanning coherent Doppler lidar[J]. Optics Express, 2019, 27(22):31235-31245. [17] AITKEN M L, RHODES M E, LUNDQUIST J K. Performance of a wind-profiling lidar in the region of wind turbine rotor disks[J]. Journal of Atmospheric and Oceanic Technology, 2012, 29(3):347-355. [18] 温斌荣, 魏莎, 魏克湘, 等.风切变和塔影效应对风力机输出功率的影响[J].机械工程学报, 2018, 54(10):124-132. WEN B R, WEI S, WEI K X, et al. Influences of wind shear and tower shadow on the power output of wind turbine[J]. Journal of Mechanical Engineering, 2018, 54(10):124-132. [19] 王乔乔, 张秀芝, 王尚昆. Windcube激光雷达与测风塔测风结果对比[J].气象科技, 2013, 41(1):20-26. WANG Q Q, ZHANG X Z, WANG S K. Comparison between Windcube laser radar and wind tower data[J]. Meteorological Science and Technology, 2013, 41(1):20-26. |
服务与反馈:
|
【文章下载】【发表评论】【查看评论】【加入收藏】
|
|
|