摘要:
|
基于星载激光雷达CALIOP获取到的云层和气溶胶的垂直剖面信息,分析了2015年7月—2021年6月期间过境东中国海的数据,得到大量的海雾、低云、中高云和海表样本点,将这些样本点应用于Himawari-8日间海雾检测的通道选择和阈值设定中,提出了基于通道1、2、4和13的日间海雾静态阈值检测方法。结果表明:使用现有的黄海中部的浮标能见度仪数据,结合Himawari-8海雾检测通道选取的反照率数据,可以重新拟合校正目前常用的海雾能见度反演经验公式中的参数常量,改进此公式在东中国海域雾区特别是厚云区的适用性。 |
Based on the vertical profile information of clouds and aerosols acquired by the spaceborne lidar CALIOP (cloud-aerosol lidar with orthogonal polarization), we analyze the data of processes passing over the East China Sea from July 2015 to June 2021, and obtain a large number of sea fog, low cloud, middle and high cloud, sea surface sample points, which are applied to the channel selection and threshold setting of Himawari-8 daytime sea fog detection. We further propose a static threshold detection method of daytime sea fog based on 1, 2 , 4 and 13 channels. The results show that the existing buoy visibility data in the middle of Yellow Sea, combined with the albedo data that is selected by the Himawari-8 sea fog detection channel, can be re-fitted to correct the parameter constants in the empirical formula for sea fog visibility inversion, and improve the applicability of this formula in the East China Sea, especially in the thick cloud area. |
参考文献:
|
[1] OLIVER D A, LEWELLEN W S, WILLIAMSON G G. The interaction between turbulent and radiative transport in the development of fog and low-level stratus[J]. Journal of the Atmospheric Sciences, 1978, 35(2):301-316. [2] 王彬华. 海雾[M]. 北京:海洋出版社, 1983. WANG B H. Sea fog[M]. Beijing:Ocean Press, 1983. [3] WU D, LU B, ZHANG T C, et al. A method of detecting sea fogs using CALIOP data and its application to improve MODIS-based sea fog detection[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 2015, 153:88-94. [4] XIAO Y F, ZHANG J, QIN P. An algorithm for daytime sea fog detection over the Greenland sea based on MODIS and CALIOP data[J]. Journal of Coastal Research, 2019, 90(S1):95-103. [5] 陈洁, 郑伟, 刘诚. Himawari-8静止气象卫星草原火监测分析[J]. 自然灾害学报, 2017, 26(4):197-204. CHEN J, ZHENG W, LIU C. Application of grassland fire monitoring based on Himawari-8 geostationary meteorological satellite data[J]. Journal of Natural Disasters, 2017, 26(4):197-204. [6] 张培, 吴东. 基于Himawari-8数据的日间海雾检测方法[J]. 大气与环境光学学报, 2019, 14(3):211-220. ZHANG P, WU D. Daytime sea fog detection method using Himawari-8 data[J]. Journal of Atmospheric and Environmental Optics, 2019, 14(3):211-220. [7] RYU H S, HONG S. Sea fog detection based on normalized difference snow index using advanced Himawari imager observations[J]. Remote Sensing, 2020, 12(9):1521. [8] 傅刚, 徐杰, 张树钦. 数值模拟和卫星反演大气能见度对比分析[J]. 中国海洋大学学报(自然科学版), 2011, 41(4):1-10. FU G, XU J, ZHANG S Q. Comparison of modeling atmospheric visibility with visible satellite imagery[J]. Periodical of Ocean University of China, 2011, 41(4):1-10. [9] 田云菲, 杨悦, 高山红. 一个黄渤海海雾大气水平能见度算法[J]. 海洋气象学报, 2019, 39(2):24-33. TIAN Y F, YANG Y, GAO S H. An algorithm of atmospheric horizontal visibility associated with sea fog over the Yellow and Bohai Seas[J]. Journal of Marine Meteorology, 2019, 39(2):24-33. [10] STOELINGA M T, WARNER T T. Nonhydrostatic, mesobetascale model simulations of cloud ceiling and visibility for an east coast winter precipitation event[J]. Journal of Applied Meteorology, 1999, 38(4):385-404. [11] HUNT G E. Radiative properties of terrestrial clouds at visible and infra-red thermal window wavelengths[J]. Quarterly Journal of the Royal Meteorological Society, 1973, 99(420):346-369. [12] STEPHENS G L, PALTRIDGE G W, PLATT C M R. Radiation profiles in extended water clouds. III:observations[J]. Journal of the Atmospheric Sciences, 1978, 35(11):2133-2141. [13] KRIEBEL K T. Cloud liquid water path derived from AVHRR data using APOLLO[J]. International Journal of Remote Sensing, 1989, 10(4-5):723-729. [14] HEIDINGER A K, STEPHENS G L. Molecular line absorption in a scattering atmosphere. Part II:application to remote sensing in the O2 A band[J]. Journal of the Atmospheric Sciences, 2000, 57(10):1615-1634 |
服务与反馈:
|
【文章下载】【发表评论】【查看评论】【加入收藏】
|
|
|