基于海啸单位源数据库的南中国海区域海啸数值预报方法 |
作者:李宏伟1 2 3 孙立宁1 2 王宗辰1 2 徐志国1 2 3 王培涛1 2 3 史健宇1 2 |
单位:1. 国家海洋环境预报中心, 北京 100081; 2. 自然资源部海啸预警中心, 北京 100081; 3. 国家海洋环境预报中心 自然资源部海洋灾害预报技术重点实验室, 北京 100081 |
关键词:海啸 预警 单位源 Slab2.0 |
分类号:P731.36 |
|
出版年·卷·期(页码):2023·40·第一期(21-27) |
摘要:
|
基于全球俯冲带板片模型Slab 2.0将马尼拉海沟划分为80个海啸单位源,构建了海啸单位源数据库,建立了基于单位源数据库方法预报海啸的业务化流程。经过与现有海啸数值模型计算结果的比对,单位源数据库预报的最大海啸波幅平均预报一致性可以达到88%,能够满足业务化需求。 |
In order to improve the tsunami early warning capability in this region, we decompose Manila Trench into 80 tsunami unit sources based on the subduction zone geometry model(Slab 2.0), and construct a tsunami unit source database. Meanwhile, we also establish an operational procedure for tsunami forecast based on the unit source database. By comparing with the results of existing tsunami numerical model, the average forecast consistency of the maximum tsunami amplitude computed by unit source database can reach 88%, which meets the operational needs of tsunami warning. |
参考文献:
|
[1] 王宗辰, 原野, 王培涛, 等. 一个覆盖太平洋区域的地震海啸波幅预报系统及检验[J]. 海洋学报, 2019, 41(2):1-13. WANG Z C, YUAN Y, WANG P T, et al. Development and validation of a tsunami amplitude forecast system covering the whole Pacific Ocean[J]. Haiyang Xuebao, 2019, 41(2):1-13. [2] ROSHAN A D, SHAH M, PISHARADY A S, et al. Development of an expert system for tsunami warning:a unit source approach[C]//Proceedings of the CANDU Safety Association for Sustainability-2015(CANSAS-2015). Mumbai, 2015. [3] LI L L, SWITZER A D, CHAN C H, et al. How heterogeneous coseismic slip affects regional probabilistic tsunami hazard assessment:a case study in the South China Sea[J]. Journal of Geophysical Research:Solid Earth, 2016, 121(8):6250-6272. [4] YUAN Y, LI H W, WEI Y, et al. Probabilistic tsunami hazard assessment (PTHA) for southeast coast of Chinese mainland and Taiwan Island[J]. Journal of Geophysical Research:Solid Earth, 2021, 126(2):e2020JB020344. [5] BLASER L, KRUGER F, OHRNBERGER M, et al. Scaling relations of earthquake source parameter estimates with special focus on subduction environment[J]. Bulletin of the Seismological Society of America, 2010, 100(6):2914-2926. [6] STRASSER F O, ARANGO M C, BOMMER J J. Scaling of the source dimensions of interface and intraslab subduction-zone earthquakes with moment magnitude[J]. Seismological Research Letters, 2010, 81(6):941-950. [7] LI H W, YUAN Y, XU Z G, et al. The dependency of probabilistic tsunami hazard assessment on magnitude limits of seismic sources in the South China Sea and adjoining basins[J]. Pure and Applied Geophysics, 2017, 174(6):2351-2370. [8] OKAL E A, SYNOLAKIS C E, KALLIGERIS N. Tsunami simulations for regional sources in the South China and adjoining seas[J]. Pure and Applied Geophysics, 2011, 168(6):1153-1173. [9] HAYES G P, MOORE G L, PORTNER D E, et al. Slab2, a comprehensive subduction zone geometry model[J]. Science, 2018, 362(6410):58-61. [10] OKADA Y. Internal deformation due to shear and tensile faults in a half-space[J]. Bulletin of the Seismological Society of America, 1992, 82(2):1018-1040. [11] GEIST E L, PARSONS T. Probabilistic analysis of tsunami hazards[J]. Natural Hazards, 2006, 37(3):277-314. [12] MUELLER C, POWER W, FRASER S, et al. Effects of rupture complexity on local tsunami inundation:implications for probabilistic tsunami hazard assessment by example[J]. Journal of Geophysical Research:Solid Earth, 2015, 120(1):488-502. |
服务与反馈:
|
【文章下载】【发表评论】【查看评论】【加入收藏】
|
|
|