首页期刊介绍通知公告编 委 会投稿须知电子期刊广告合作联系我们在线留言
 
基于Stacking机器学习模型的南海北部海温预报
作者:孙昭1 2  李云1  江毓武2  王兆毅1 
单位:1. 国家海洋环境预报中心 自然资源部海洋灾害预报技术重点实验室, 北京 100081;
2. 厦门大学海洋与地球学院, 福建 厦门 361102
关键词:机器学习 Stacking 南海北部 海温预报 
分类号:P731.31
出版年·卷·期(页码):2023·40·第一期(39-45)
摘要:
基于 Stacking(ET-ET)的机器学习算法,利用美国国家环境预报中心再分析数据和MGDSST海温融合数据,建立了一套高效的海温长期预报方法,并在南海北部海域开展了1 a的表层海温长期预报实验。结果表明:基于Stacking(ET-ET)机器学习模型的表层海温长期预报的均方根误差降至0.52 ℃,平均绝对百分比误差降至1.58%,明显优于基于支持向量机、人工神经网络和长短期记忆模型的预报结果。
In this paper, an efficient long-term SST forecast method is established based on Stacking (ET-ET) machine learning algorithm using reanalysis data of National Centers for Environmental Prediction and Mergid satellite and in situ data Global Daily sea surface temperature (SST) fusion data, and long-term SST forecast experiment is carried out in the northern South China Sea for one year. The results show that the root mean square error of long-term SST forecast based on Stacking (ET-ET) machine learning model is reduced to 0.52 ℃, and the mean absolute percentage error is reduced to 1.58%, which is significantly better than the forecast results based on the support vector machine, artificial neural network and long short-term memory model.
参考文献:
[1] 张建华. 海温预报知识讲座第一讲海水温度预报概况[J]. 海洋预报, 2003, 20(4):81-85. ZHANG H J. Lecture on knowledge of sea temperature prediction, Lecture 1, Overview of sea water temperature prediction[J]. Marine Forecasts, 2003, 20(4):81-85.
[2] 吴磊, 王彬, 潘锡山, 等. 融合海表温度产品在渤黄东海的对比分析及初步验证[J]. 海洋通报, 2020, 39(6):657-668. WU L, WANG B, PAN X S, et al. Intercomparison analysis of merged sea surface temperature products for the Bohai, Yellow and East China Seas[J]. Marine Science Bulletin, 2020, 39(6):657-668.
[3] 吴新荣, 王喜冬, 李威, 等. 海洋数据同化与数据融合技术应用综述[J]. 海洋技术学报, 2015, 34(3):97-103. WU X R, WANG X D, LI W, et al. Review of the application of ocean data assimilation and data fusion techniques[J]. Journal of Ocean Technology, 2015, 34(3):97-103.
[4] 王辉, 万莉颖, 秦英豪, 等. 中国全球业务化海洋学预报系统的发展和应用[J]. 地球科学进展, 2016, 31(10):1090-1104. WANG H, WAN L Y, QIN Y H, et al. Review of the application of ocean data assimilation and data fusion techniques[J]. Advances in Earth Science, 2016, 31(10):1090-1104.
[5] 刘娜, 王辉, 凌铁军, 等. 全球业务化海洋预报进展与展望[J]. 地球科学进展, 2018, 33(2):131-140. LIU N, WANG H, LING T J, et al. Review and prospect of global operational ocean forecasting[J]. Advances in Earth Science, 2018, 33(2):131-140.
[6] 张培军, 周水华, 梁昌霞. 基于卫星遥感海温数据的南海SST预报误差订正[J]. 热带海洋学报, 2020, 39(6):57-65. ZHANG P J, ZHOU S H, LIANG C X. Study on the correction of SST prediction in South China Sea using remotely sensed SST[J]. Journal of Tropical Oceanography, 2020, 39(6):57-65.
[7] ZHANG Q, WANG H, DONG J Y, et al. Prediction of sea surface temperature using long short-term memory[J]. IEEE Geoscience and Remote Sensing Letters, 2017, 14(10):1745-1749.
[8] 郝日栩, 赵玉新, 何忠杰, 等. 基于EOF-NAR神经网络混合模型的海温预报方法研究[C]//中国海洋学会2019海洋学术(国际)双年会. 三亚, 2019:31-45. HAO R X, ZHAO Y X, HE Z J, et al. Study on sea surface temperature prediction method based on EOF-NAR neural network hybrid model[C]//2019 Marine Academic (International) Biennial Meeting of China Oceanographic Society. Sanya, 2019:31-45.
[9] 王兆毅, 李云, 王旭. 中国近岸海域基础预报单元海温预报指导产品研制[J]. 海洋预报, 2020, 37(4):59-65. WANG Z Y, LI Y, WANG X. Development of forecast guidance product for sea temperature of basic forecast units in the Chinese coastal waters[J]. Marine Forecasts, 2020, 37(4):59-65.
[10] 陈希, 沙文钰, 李妍, 等. 人工神经网络技术在海浪预报中的应用[J]. 海洋通报, 2002, 21(2):11-15. CHEN X, SHA W Y, LI Y, et al. Application of the artificial neural network in the sea wave forecast[J]. Marine Science Bulletin, 2002, 21(2):11-15.
[11] 齐义泉, 张志旭, 李志伟, 等. 人工神经网络在海浪数值预报中的应用[J]. 水科学进展, 2005, 16(1):32-35. QI Y Q, ZHANG Z X, LI Z W, et al. Application of artificial neural network to numerical wave prediction[J]. Advances in Water Science, 2005, 16(1):32-35.
[12] 王建华, 于红兵, 宋运法. 人工神经网络在潮汐数值预报中的应用[J]. 海洋预报, 2007, 24(2):47-51. WANG J H, YU H B, SONG Y F. Application of artificial neural network to numerical tidal prediction[J]. Marine Forecasts, 2007, 24(2):47-51.
[13] PAVLYSHENKO B. Using stacking approaches for machine learning models[C]//2018 IEEE Second International Conference on Data Stream Mining & Processing (DSMP). Lviv, Ukraine:IEEE, 2018:255-258.
[14] KANAMITSU M, EBISUZAKI W, WOOLLEN J, et al. NCEPDOE AMIP-II reanalysis (R-2)[J]. Bulletin of the American Meteorological Society, 2002, 83(11):1631-1644.
[15] SAKURAI T, YUKIO K, KURAGANO T. Merged satellite and insitu data global daily SST[C]//Proceedings.2005 IEEE International Geoscience and Remote Sensing Symposium. Seoul, Korea (South):IEEE, 2005:2606-2608.
[16] GEURTS P, ERNST D, WEHENKEL L. Extremely randomized trees[J]. Machine Learning, 2006, 63(1):3-42.
[17] WOLPERT D H. Stacked generalization[J]. Neural Networks, 1992, 5(2):241-259.
[18] BREIMAN L. Stacked regressions[J]. Machine Learning, 1996, 24(1):49-64.
服务与反馈:
文章下载】【发表评论】【查看评论】【加入收藏
 
 海洋预报编辑部 地址:北京海淀大慧寺路8号 电话:010-62105776
投稿网址:http://www.hyyb.org.cn
邮箱:bjb@nmefc.cn
本系统由北京博渊星辰网络科技有限公司设计开发 技术支持电话:010-63361626