首页期刊介绍通知公告编 委 会投稿须知电子期刊广告合作联系我们在线留言
 
WRF模式中不同物理参数化方案组合在中国近海风能资源评估中的适用性研究
作者:杜梦蛟  易侃  文仁强  张子良  王浩 
单位:中国长江三峡集团有限公司科学技术研究院, 北京 100038
关键词:WRF模式 参数化方案 风能资源 适用性 
分类号:P743
出版年·卷·期(页码):2023·40·第一期(65-78)
摘要:
基于中尺度气象数值模式 WRF(Weather Research and Forecasting),分别对我国广东、浙江、山东这3个近海典型风能资源储备区域进行了45组物理参数化方案组合连续1 M的敏感性试验,对试验中多要素的模拟结果进行综合评估,分别确定了适用于3个风能资源储备区各自排名前3的物理参数化方案组合,并对其模拟性能较优的原因进行分析。为了测试3个风能资源储备区筛选得到的物理参数化方案组合的适用性,利用不同于敏感性试验时段的模拟结果,结合海上测风塔和海洋气象站的实测数据开展进一步评估。结果表明,优选得到的物理参数化方案组合具有较好的适用性,其对近海的风速模拟性能较优,具有实际业务应用价值。
Based on the Weather Research and Forecasting (WRF) mesoscale numerical model, 45 groups of physical parameterization scheme combinations are used to conduct sensitive experiments lasting 1 month for the offshore areas of Guangdong, Zhejiang and Shandong provinces, which are the three typical wind energy resource reserve areas in China, and the simulation results of multiple elements in the experiments are comprehensively evaluated in order to determine 3 physical parameterization scheme combinations that are suitable for each of the 3 wind energy resource reserve areas. Moreover, the reason for their better simulation performance is analyzed. In order to test the applicability of the combination of physical parameterization schemes selected for the three wind energy resource reserve areas, the simulation results different from the sensitivity experiment period are used to conduct further evaluation by using the measured data from offshore wind towers and marine meteorological stations. The results show that the selected combination of physical parameterization schemes has good applicability and their performance for offshore wind speed simulation is better, which has the value of practical business application.
参考文献:
[1] 夏云峰. 2019年全球新增风电装机超60GW[J]. 风能, 2020(4):36-41. XIA Y F. The global installed capacity of new wind power exceeded 60GW in 2019[J]. Wind Energy, 2020(4):36-41.
[2] 于晶, 马广东, 刘鑫, 等. 我国风力发电发展存在的问题及健康发展策略[J]. 工程技术(文摘版), 2022(30). YU J, MA G D, LIU X, et al. Problems and healthy development strategies of wind power generation in China[J]. Engineering Technology (Abstract Edition), 2022(30).
[3] 王秀强. 朝阳之晖, 与时并明——2020年中国风电行业回顾与展望[J]. 能源, 2021(2):60-65. WANG X Q. Review and prospect of China's wind power industry in 2020[J]. Energy, 2021(2):60-65.
[4] 赵世明, 姜波, 徐辉奋, 等. 中国近海海洋风能资源开发利用现状与前景分析[J]. 海洋技术, 2010, 29(4):117-121. ZHAO S M, JIANG B, XU H F, et al. Exploration and application of ocean wind energy resources in coastal sea of China[J]. Ocean Technology, 2010, 29(4):117-121.
[5] 宋军. 苏北近海与陆上风资源特性对比研究[D]. 北京:华北电力大学(北京), 2016. SONG J. Comparative research on offshore and onshore wind resources characteristics in North Jiangsu area[D]. Beijing:North China Electric Power University (Beijing), 2016.
[6] 张秀芝, BODDINGTON R, 朱蓉, 等. 中国近海风电场开发指南[M]. 北京:气象出版社, 2010. ZHANG X Z, BODDINGTON R, ZHU R, et al. China offshore wind farm development guide[M]. Beijing:China Meteorological Press, 2010.
[7] 陈建东, 王晶. 国外海上风电的发展现状、趋势与展望[J]. 世界科技研究与发展, 2014, 36(4):458-464. CHEN J D, WANG J. Development status, trends and prospects of offshore wind power in some foreign countries[J]. World Sci-Tech R & D, 2014, 36(4):458-464.
[8] 易跃春. 中国海上风电2018[J]. 电力设备管理, 2018(12):81-83. YI Y C. China offshore wind power in 2018[J]. Electric Power Equipment Management, 2018(12):81-83.
[9] VEERS P, DYKES K, LANTZ E, et al. Grand challenges in the science of wind energy[J]. Science, 2019, 366(6464):eaau2027.
[10] 李泽椿, 朱蓉, 何晓凤, 等. 风能资源评估技术方法研究[J]. 气象学报, 2007, 65(5):708-717. LI Z C, ZHU R, HE X F, et al. Study on the assessment technology of wind energy resource[J]. Acta Meteorologica Sinica, 2007, 65(5):708-717.
[11] BROWER M C. 风资源评估:风电项目开发实用导则[M]. 刘长浥, 张菲, 王晓蓉, 译. 北京:机械工业出版社, 2014. BROWER M C. Wind resource assessment:a practical guide to developing a wind project[M]. LIU C Y, ZHANG F, WANG X R, trans. Beijing:China Machine Press, 2014.
[12] 朱飙, 李春华, 陆登荣. 甘肃酒泉区域风能资源评估[J]. 干旱气象, 2009, 27(2):152-156. ZHU B, LI C H, LU D R. Wind energy resource assessment of Jiuquan, Gansu Province[J]. Journal of Arid Meteorology, 2009, 27(2):152-156.
[13] 旷芳芳, 张友权, 张俊鹏, 等. 3种海面风场资料在台湾海峡的比较和评估[J]. 海洋学报, 2015, 37(5):44-53. KUANG F F, ZHANG Y Q, ZHANG J P, et al. Comparison and evaluation of three sea surface wind products in Taiwan Strait[J]. Haiyang Xuebao, 2015, 37(5):44-53.
[14] 廖忠云, 季民. 海洋风场三维可视化方法研究[J]. 海洋信息, 2016(2):1-5. LIAO Z Y, JI M. Research on 3D visualization method of marine wind field[J]. Marine Information, 2016(2):1-5.
[15] 周海, 匡礼勇, 程序, 等. 测风塔在风能资源开发利用中的应用研究[J]. 水电自动化与大坝监测, 2010, 34(5):5-8. ZHOU H, KUANG L Y, CHENG X, et al. An applied study on wind tower for wind energy resources exploitation[J]. Hydropower Automation and Dam Monitoring, 2010, 34(5):5-8.
[16] 蔡树群, 牛建伟, 何映晖, 等. 基于海上风电场构建海洋水文同步实时现场观测系统的思考[J]. 热带海洋学报, 2021, 40(3):96- 102. CAI S Q, NIU J W, HE Y H, et al. A view on constructing synchronous real-time in-situ observational system of marine hydrology based on offshore wind power field[J]. Journal of Tropical Oceanography, 2021, 40(3):96-102.
[17] 谢今范, 雷杨娜, 孙娴. 风电场代表年数据订正方法的不确定性分析[J]. 太阳能, 2015(4):48-55. XIE J F, LEI Y N, SUN X. Uncertainty analysis of correction method for representative annual data of wind farm[J]. Solar Energy, 2015(4):48-55.
[18] 韩毅, 赵勇, 童博, 等. 复杂地形风场的风资源评估方法与展望[J]. 热力发电, 2020, 49(11):139-146. HAN Y, ZHAO Y, TONG B, et al. Review and outlook of wind resource assessment methods for wind site located at complex terrain[J]. Thermal Power Generation, 2020, 49(11):139-146.
[19] 易侃, 张子良, 张皓, 等. 海上风能资源评估数值模拟技术现状及发展趋势[J]. 分布式能源, 2021, 6(1):1-6. YI K, ZHANG Z L, ZHANG H, et al. Technical status and development trends of numerical modeling for offshore wind resource assessment[J]. Distributed Energy, 2021, 6(1):1-6.
[20] 李正泉, 宋丽莉, 马浩, 等. 海上风能资源观测与评估研究进展[J]. 地球科学进展, 2016, 31(8):800-810. LI Z Q, SONG L L, MA H, et al. Review of methodologies for offshore wind resource observation and assessment[J]. Advances in Earth Science, 2016, 31(8):800-810.
[21] 程兴宏, 陶树旺, 魏磊, 等. 基于WRF模式和自适应偏最小二乘回归法的风能预报试验研究[J]. 高原气象, 2012, 31(5):1461- 1469. CHENG X H, TAO S W, WEI L, et al. Short-term wind power forecasting experiment based on WRF model and adapting partial least square regression method[J]. Plateau Meteorology, 2012, 31(5):1461-1469.
[22] 应有, 申新贺, 姜婷婷, 等. 基于中微尺度耦合模式的风电场风资源评估方法研究[J]. 可再生能源, 2021, 39(2):195-200. YING Y, SHEN X H, JIANG T T, et al. Research on wind resource assessment method based on the coupled mesoscalemicroscale framework[J]. Renewable Energy Resources, 2021, 39(2):195-200.
[23] BILAL M, BIRKELUND Y, HOMOLA M, et al. Wind over complex terrain-Microscale modelling with two types of mesoscale winds at Nygårdsfjell[J]. Renewable Energy, 2016, 99:647-653.
[24] BADGER J, FRANK H, HAHMANN A N, et al. Wind-climate estimation based on mesoscale and microscale modeling:statistical-dynamical downscaling for wind energy applications[J]. Journal of Applied Meteorology and Climatology, 2014, 53(8):1901-1919.
[25] 穆海振, 徐家良, 柯晓新, 等. 高分辨率数值模式在风能资源评估中的应用初探[J]. 应用气象学报, 2006, 17(2):152-159. MU H Z, XU J L, KE X X, et al. Application of high resolution numerical model to wind energy potential assessment[J]. Journal of Applied Meteorological Science, 2006, 17(2):152-159.
[26] ABERSON S D. The impact of dropwindsonde data from the THORPEX pacific area regional campaign and the NOAA hurricane field program on tropical cyclone forecasts in the global forecast system[J]. Monthly Weather Review, 2011, 139(9):2689- 2703.
[27] HALLY A, RICHARD E, FRESNAY S, et al. Ensemble simulations with perturbed physical parametrizations:Pre-HyMeX case studies[J]. Quarterly Journal of the Royal Meteorological Society, 2014, 140(683):1900-1916.
[28] SUN G D, MU M. A new approach to identify the sensitivity and importance of physical parameters combination within numerical models using the Lund-Potsdam-Jena (LPJ) model as an example[J]. Theoretical and Applied Climatology, 2017, 128(3):587-601.
[29] SKAMAROCK W C, KLEMP J B, DUDHIA J, et al. A description of the advanced research WRF version 2[R]. Boulder:NCAR, 2018,113:7-25.
[30] SONG J B, FAN W, LI S, et al. Impact of surface waves on the steady near-surface wind profiles over the ocean[J]. BoundaryLayer Meteorology, 2015, 155(1):111-127.
[31] CARVALHO D, ROCHA A, GÓMEZ-GESTEIRA M, et al. WRF wind simulation and wind energy production estimates forced by different reanalyses:comparison with observed data for Portugal[J]. Applied Energy, 2014, 117:116-126.
[32] CLIFFORD K T. WRF-model performance for wind power forecasting in the coast ranges of central California[D]. San Jose State University, 2011.
[33] HU X M, KLEIN P M, XUE M. Evaluation of the updated YSU planetary boundary layer scheme within WRF for wind resource and air quality assessments[J]. Journal of Geophysical Research:Atmospheres, 2013, 118(18):10490-10505.
[34] JÄRVINEN H, LAINE M, SOLONEN A, et al. Ensemble prediction and parameter estimation system:the concept[J]. Quarterly Journal of the Royal Meteorological Society, 2012, 138(663):281-288.
[35] GIANNAKOPOULOU E M, NHILI R. WRF model methodology for offshore wind energy applications[J]. Advances in Meteorology, 2014, 2014(9):68-79.
[36] HERSBACH H, BELL B, BERRISFORD P, et al. The ERA5 global reanalysis[J]. Quarterly Journal of the Royal Meteorological Society, 2020, 146(730):1999-2049.
[37] SMITH E A, ASRAR G, FURUHAMA Y, et al. International global precipitation measurement (GPM) program and mission:an overview[M]//LEVIZZANI V, BAUER P, TURK F J. Measuring Precipitation from Space. Dordrecht:Springer, 2007.
[38] TZENG G H, HUANG J J. Multiple attribute decision making:methods and applications[M]. Boca Raton:CRC Press, 2011.
[39] LIN Y L, COLLE B A. A new bulk microphysical scheme that includes riming intensity and temperature-dependent ice characteristics[J]. Monthly Weather Review, 2011, 139(3):1013- 1035.
[40] NAKANISHI M, NIINO H. An improved Mellor-Yamada level- 3 model:its numerical stability and application to a regional prediction of advection fog[J]. Boundary-Layer Meteorology, 2006, 119(2):397-407.
[41] BETTS A K, HONG S Y, PAN H L. Comparison of NCEP-NCAR Reanalysis with 1987 FIFE Data[J]. Monthly Weather Review, 1996, 124(7):1480-1498.
[42] COLLINS W D, RASCH P J, BOVILLE B A, et al. Description of the NCAR community atmosphere model (CAM 3.0)[R]. NCAR, 2004.
服务与反馈:
文章下载】【发表评论】【查看评论】【加入收藏
 
 海洋预报编辑部 地址:北京海淀大慧寺路8号 电话:010-62105776
投稿网址:http://www.hyyb.org.cn
邮箱:bjb@nmefc.cn
本系统由北京博渊星辰网络科技有限公司设计开发 技术支持电话:010-63361626