南海大气边界层高度的气候特征研究 |
作者:董议文1 李响1 张蕴斐1 王剑1 易侃2 姚佳伟1 |
单位:1. 国家海洋环境预报中心 自然资源部海洋灾害预报技术重点实验室, 北京 100081; 2. 中国长江三峡集团有限公司科学技术研究院, 北京 100038 |
关键词:南海 大气边界层高度 季节变化 日变化 趋势 |
分类号:P421.3 |
|
出版年·卷·期(页码):2023·40·第一期(79-90) |
摘要:
|
利用1979-2020年逐时的ERA5再分析数据,研究了南海区域大气边界层高度的气候特征及其影响因子。结果表明:南海区域平均大气边界层高度为500~800 m,空间上呈中间高、四周低的分布特征。南海大气边界层高度具有显著的季节变化特征,总体按照冬季、秋季、夏季、春季依次递减,日变化较小,大部分区域边界层高度的日变化幅度小于 300 m,日循环比较平缓。南海大气边界层高度显著的季节变化特征主要受海气温差、海表面风、感热通量、潜热通量和稳定度的共同影响。较大的海气温差和强风速使海表热通量增加,下垫面不稳定性增加,海气相互作用加强,湍流活动增强,导致秋冬季边界层高度较高。过去 42 a南海区域年平均大气边界层高度显著增高,年平均增高率约为0.8 m/a,且边界层高度变化存在显著的季节差异。海表面温度升高、潜热通量增加以及稳定度减小有利于边界层的发展,可能是导致南海边界层高度增加的主要原因。 |
Based on hourly ERA5 reanalysis data from 1979 to 2020, the climatic characteristics and influencing factors of atmospheric boundary layer height over the South China Sea are studied. The results show that the average boundary layer height over the South China Sea is within the range of 500~800 m with a spatial distribution of higher in the middle and lower in the periphery. The boundary layer height over the South China Sea is characterized by significant seasonal variation, generally decreasing in order of winter, autumn, summer and spring, with relatively small diurnal variation. The diurnal variation amplitude of the boundary layer height in most areas is less than 300 m, and the diurnal cycle is relatively gentle. The significant seasonal variation characteristics of the boundary layer height over the South China Sea are mainly affected by the air-sea temperature difference, sea surface wind, sensible heat flux, latent heat flux and stability. The large air-sea temperature difference and strong wind speed increase the sea surface heat flux, and increase the instability of the underlying surface, and strengthen the air-sea interaction and enhance turbulence activities, leading to higher boundary layer height in autumn and winter. In the past 42 years, the annual average atmospheric boundary layer height over the South China Sea has a significant inceasing trend with the rate of about 0.8 m/yr, and there are significant seasonal differences in the variation of boundary layer height. The rise of sea surface temperature, the increase of latent heat flux and the decrease of stability may be the main reasons for the increase of boundary layer height over the South China Sea. |
参考文献:
|
[1] STULL R B. An introduction to boundary layer meteorology[M]. Dordrecht, Netherlands:Springer, 1988. [2] BAKAS N A, FOTIADI A, KARIOFILLIDI S. Climatology of the boundary layer height and of the wind field over greece[J]. Atmosphere, 2020, 11(9):910. [3] 李响, 王辉, 吴辉碇, 等. 海上大气边界层数值预报技术发展概论[J]. 海洋预报, 2010, 27(1):72-82. LI X, WANG H, WU H D, et al. A review of techniques for numerical forecasting marine atmosphere boandary layer[J]. Marine Forecasts, 2010, 27(1):72-82. [4] 江丽芳, 尹毅, 刘春霞. 边界层参数化方案对台风"莫拉菲"热力和动力结构特征影响的对比[J]. 海洋预报, 2017, 34(4):20-31. JIANG L F, YIN Y, LIU C X. Comparison of the thermal and dynamic boundary layer structure with different boundary layer parameterizations during typhoon"Molave"[J]. Marine Forecasts, 2017, 34(4):20-31. [5] DAVIES F, MIDDLETON D R, BOZIER K E. Urban air pollution modelling and measurements of boundary layer height[J]. Atmospheric Environment, 2007, 41(19):4040-4049. [6] QUAN J N, GAO Y, ZHANG Q, et al. Evolution of planetary boundary layer under different weather conditions, and its impact on aerosol concentrations[J]. Particuology, 2013, 11(1):34-40. [7] YANG T, WANG Z F, ZHANG W, et al. Technical note:Boundary layer height determination from lidar for improving air pollution episode modeling:Development of new algorithm and evaluation[J]. Atmospheric Chemistry and Physics, 2017, 17(10):6215- 6225. [8] HOLZWORTH G C. Estimates of mean maximum mixing depths in the contiguous united states[J]. Monthly Weather Review, 1964, 92(5):235-242. [9] LIU S Y, LIANG X Z. Observed diurnal cycle climatology of planetary boundary layer height[J]. Journal of Climate, 2010, 23(21):5790-5809. [10] VON ENGELN A, TEIXEIRA J. A planetary boundary layer height climatology derived from ECMWF reanalysis data[J]. Journal of Climate, 2013, 26(17):6575-6590. [11] SEIDEL D J, ZHANG Y H, BELJAARS A, et al. Climatology of the planetary boundary layer over the continental United States and Europe[J]. Journal of Geophysical Research:Atmospheres, 2012, 117(D17):D17106. [12] GU J, ZHANG Y H, YANG N, et al. Diurnal variability of the planetary boundary layer height estimated from radiosonde data[J]. Earth and Planetary Physics, 2020, 4(5):479-492. [13] 杜一博, 张强, 王凯嘉, 等. 西北干旱区夏季晴天、阴天边界层结构及其陆面过程对比分析[J]. 高原气象, 2018, 37(1):148-157. DU Y B, ZHANG Q, WANG K J, et al. The northwest arid areas in summer sunny day, cloudy day boundary layer structure and land surface process comparison analysis[J]. Plateau Meteorology, 2018, 37(1):148-157. [14] 万云霞, 张宇, 张瑾文, 等. 感热变化对东亚地区大气边界层高度的影响[J]. 高原气象, 2017, 36(1):173-182. WAN Y X, ZHANG Y, ZHANG J W, et al. Influence of sensible heat on planetary boundary layer height in East Asia[J]. Plateau Meteorology, 2017, 36(1):173-182. [15] 苏彦入, 吕世华, 范广洲. 青藏高原夏季大气边界层高度与地表能量输送变化特征分析[J]. 高原气象, 2018, 37(6):1470-1485. SU Y R, LÜ S H, FAN G Z. The characteristics analysis on the summer atmospheric boundary layer height and surface heat fluxes over the Qinghai-Tibetan Plateau[J]. Plateau Meteorology, 2018, 37(6):1470-1485. [16] ZHANG W C, GUO J P, MIAO Y C, et al. Planetary boundary layer height from CALIOP compared to radiosonde over China[J]. Atmospheric Chemistry and Physics, 2016, 16(15):9951-9963. [17] SI Y D, LI S S, CHEN L F, et al. Validation and spatiotemporal distribution of GEOS-5- based planetary boundary layer height and relative humidity in China[J]. Advances in Atmospheric Sciences, 2018, 35(4):479-492. [18] 涂静, 张苏平, 程相坤, 等. 黄东海大气边界层高度时空变化特征[J]. 中国海洋大学学报, 2012, 42(4):7-18. TU J, ZHANG S P, CHENG X K, et al. Temporal and spatial variation of Atmospheric Boundary Layer Height (ABLH) over the Yellow-East China Sea[J]. Periodical of Ocean University of China, 2012, 42(4):7-18. [19] 韩美, 张苏平, 尹跃进, 等. 黄东海大气边界层高度季节变化特征及其成因[J]. 中国海洋大学学报, 2012, 42(S1):34-44. HAN M, ZHANG S P, YIN Y J, et al. The seasonal variation and causation of atmospheric boundary layer height at Yellow-East Sea[J]. Periodical of Ocean University of China, 2012, 42(S1):34-44. [20] 于晓丽, 谢强, 王东晓. 1998年季风爆发期南海大气边界层的日变化[J]. 热带海洋学报, 2009, 28(2):31-35. YU X L, XIE Q, WANG D X. Diurnal cycle of marine atmospheric boundary layer during the 1998 summer monsoon onset over South China Sea[J]. Journal of Tropical Oceanography, 2009, 28(2):31-35. [21] GUO J P, MIAO Y C, ZHANG Y, et al. The climatology of planetary boundary layer height in China derived from radiosonde and reanalysis data[J]. Atmospheric Chemistry and Physics, 2016, 16(20):13309-13319. [22] ALLABAKASH S, LIM S. Climatology of planetary boundary layer height-controlling meteorological parameters over the Korean Peninsula[J]. Remote Sensing, 2020, 12(16):2571. [23] ZHANG Y H, SEIDEL D J, ZHANG S D. Trends in planetary boundary layer height over Europe[J]. Journal of Climate, 2013, 26(24):10071-10076. [24] GUO J P, LI Y, COHEN J B, et al. Shift in the temporal trend of boundary layer height in China using long-term (1979-2016) radiosonde data[J]. Geophysical Research Letters, 2019, 46(11):6080-6089. [25] LI J, CHU Y Q, LI X C, et al. Long-term trends of global maximum atmospheric mixed layer heights derived from radiosonde measurements[J]. Environmental Research Letters, 2020, 15(3):034054. [26] YANG D W, LI C C, LAU A K H, et al. Long-term measurement of daytime atmospheric mixing layer height over Hong Kong[J]. Journal of Geophysical Research:Atmospheres, 2013, 118(5):2422-2433. [27] 柳艳菊, 丁一汇. 南海季风爆发前后大气层结和混合层的演变特征[J]. 气候与环境研究, 2000, 5(4):459-468. LIU Y J, DING Y H. Evolution of the atmospheric stratification and mixed layer before and after monsoon onset over the South China Sea[J]. Climatic and Environmental Research, 2000, 5(4):459-468. [28] SEN P K. Estimates of the regression coefficient based on Kendall's Tau[J]. Journal of the American Statistical Association, 1968, 63(324):1379-1389. [29] MANN H B. Nonparametric tests against trend[J]. Econometrica, 1945, 13(3):245-259. [30] KENDALL M G. Rank correlation methods[J]. British Journal of Psychology, 1990, 25(1):86-91. [31] JOHNSON R H, CIESIELSKI P E, COTTURONE J A. Multiscale variability of the atmospheric mixed layer over the western pacific warm pool[J]. Journal of the Atmospheric Sciences, 2001, 58(18):2729-2750. |
服务与反馈:
|
【文章下载】【发表评论】【查看评论】【加入收藏】
|
|
|