摘要:
|
1822号台风”山竹”是2018年登陆华南沿海的最强台风,给华南地区带来了强风暴雨等严重灾害。本文采用了欧洲中期天气预报中心海表温度(Sea Surface Temperature,SST)日值产品和中国风云系列卫星的热红外亮温数据,对数据进行均值残差处理、小波分析和相对功率谱(Relative Power Spectrum,RPS)估计,得到台风发展过程的SST变化以及亮温RPS信息。对SST和亮温RSP的综合分析结果表明:台风生成前和活动期间在南海北部引起了SST增温异常和过境后的冷迹,也出现了21 d和16 d特征周期的热辐射异常;异常过程反映了台风与海洋的热交换过程,即热交换开始于台风生成之前,促使台风向南海北部移动,台风过境后大幅度降温;台风产生的热异常集中在南海北部,但主要分布在台风路径南侧的海面范围,这可能与台风过程中的海-陆、海-气热交换密切相关。 |
Typhoon "Mangkhut" (No. 1822) was the strongest typhoon that landed on the coast of South China in 2018 and caused severe disasters such as heavy storms and rains. In this paper, the daily sea surface temperature (SST) of the European Centre for Medium-Range Weather Forecasts and the thermal infrared brightness temperature data of China's FY-E satellites are processed by using mean residual processing, wavelet analysis and relative power spectrum estimation, and the SST variation and relative power spectrum (RPS) during the typhoon development process are obtained. The results of comprehensive analysis of SST and RPS show that SST is anomaly warm both before the typhoon generates and when the typhoon is active, while the SST decreases after the typhoon passes through the northern South China Sea. Moreover, there shows thermal radiation anomaly with characteristic periods of 21 days and 16 days. The abnormal processes reflect the heat exchange between typhoon and the ocean surface, which starts before the formation of typhoon and promotes typhoon to move to the northern South China Sea. It causes a significant cold drop in temperature after the typhoon passes through. The thermal anomaly caused by the typhoon is concentrated in the northern part of the South China Sea, especially over the sea surface on the south side of the typhoon path, which may be closely related to the sea-land and seaair heat exchange during the typhoon process. |
参考文献:
|
[1] 张元生, 郭晓, 钟美娇, 等. 汶川地震卫星热红外亮温变化[J]. 科学通报, 2010, 55(10): 904-910. ZHANG Y S, GUO X, ZHONG M J, et al. Wenchuan earthquake: Brightness temperature changes from satellite infrared information [J]. Chinese Science Bulletin, 2010, 55(10): 904-910. [2] 郭晓, 张元生, 钟美娇, 等. 提取地震热异常信息的功率谱相对变化法及震例分析[J]. 地球物理学报, 2010, 53(11): 2688-2695. GUO X, ZHANG Y S, ZHONG M J, et al. Variation characteristics of OLR for the Wenchuan earthquake[J]. Chinese Journal of Geophysics, 2010, 53(11): 2688-2695. [3] 白莉娜, 王元. 南海源地热带气旋生成和登陆频数的气候变异[J]. 南京大学学报(自然科学版), 2009, 45(6): 757-768. BAI L N, WANG Y. Climatic variation of the occurring and landing frequencies of tropical cyclones initiated from South China Sea[J]. Journal of Nanjing University (Natural Science), 2009, 45(6): 757-768. [4] 胡耀辉. SST对台风影响的数值试验分析[D]. 青岛: 中国海洋大学, 2013. HU Y H. Numerical experiment for the impact of SST to Typhoon [D]. Qingdao: Ocean University of China, 2013. [5] 王丽娟, 王辉, 闫俊岳, 等. 南海海气界面潜热通量的分布特征及其对西南季风爆发影响的初步分析[J]. 海洋学报, 2008, 30(1): 20-30. WANG L J, WANG H, YAN J Y, et al. A preliminary analysis on the distribution characteristics of the air-sea latent heat flux over the SCS and its impact on the onset of southwest monsoon[J]. Acta Oceanologica Sinica, 2008, 30(1): 20-30. [6] MANDAL M, MOHANTY U C, SINHA P, et al. Impact of sea surface temperature in modulating movement and intensity of tropical cyclones[J]. Natural Hazards, 2007, 41(3): 413-427. [7] 邱婷, 左军成, 王鼎琦, 等. 南海海表温度气候变异及对局地台风的影响[J]. 海洋科学进展, 2017, 35(1): 32-39. QIU T, ZUO J C, WANG D Q, et al. Variation of climatological sea surface temperature and its effect on local typhoon activities in the south China Sea[J]. Advances in Marine Science, 2017, 35(1): 32- 39. [8] 杨元建, 冼桃, 孙亮, 等. 连续台风对海表温度和海表高度的影响[J]. 海洋学报, 2012, 34(1): 71-78. YANG Y J, XIAN T, SUN L, et al. Impacts of sequential typhoons on sea surface temperature and sea surface height in September 2008[J]. Acta Oceanologica Sinica, 2012, 34(1): 71-78. [9] HOYOS C D, AGUDELO P A, WEBSTER P J, et al. Deconvolution of the factors contributing to the increase in global hurricane intensity[J]. Science, 2006, 312(5770): 94-77. [10] 吴迪生, 邓文珍, 张俊峰, 等. 南海台风状况下海气界面热量交换研究[J]. 大气科学, 2001, 25(3): 329-341. WU D S, DENG W Z, ZHANG J F, et al. A research on air-sea interface heat exchange under the typhoon over the south China Sea[J]. Chinese Journal of Atmospheric Sciences, 2001, 25(3): 329-341. [11] 刘宝洲. 周期图法功率谱估计及其改进算法的研究[J]. 电子测量技术,2020,43(5):76-79. LIU B Z. Research on power spectrum estimation and improved algorithm of periodic graph method[J]. Electonic Measurement Technology,2020,43(5):76-79. [12] WU L G, WANG B. Assessing impacts of global warming on tropical cyclone tracks[J]. Journal of Climate, 2004, 17(8): 1686- 1698. [13] 朱亚芬, 杨大升. 1983年埃尔尼诺期间海气热交换分析[J]. 海洋学报, 1990, 12(2): 167-178. ZHU Y F, YANG D S. The analysis of air-sea interaction during El Nino in 1983[J]. Acta Oceanologica Sinica, 1990, 12(2): 167- 178. [14] 彭永清, 严绍瑾. 海气热交换过程中海温涨落的随机效应的初步研究[J]. 南京气象学院学报, 1987,10(3): 285-295. PENG Y Q, YAN S J. A study on the stochastic effect of fluctuation of sea surface temperature on the thermal exchange between ocean and atmosphere[J]. Journal of Nanjing Institute of Meteorology, 1987,10(3): 285-295. [15] 左涛, 陈锦年, 王宏娜. 西太平洋暖池区域热通量变化及其与南海夏季风爆发的关系[J]. 海洋学研究, 2012, 30(2): 5-13. ZUO T, CHEN J N, WANG H N. Variation of air-sea heat fluxes over the western Pacific warm pool area and its relations with the onset of the South China Sea summer monsoon[J]. Journal of Marine Sciences, 2012, 30(2): 5-13. [16] 章鑫, 陈明玉. 台风登陆广东沿海前后亮温相对功率谱的变化特征分析[J]. 热带海洋学报, 2019, 38(6): 29-40. ZHANG X, CHEN M Y. Analysis of characteristics of brightness temperature relative power spectrum before and after typhoon landfall in Guangdong coastal area[J]. Journal of Tropical Oceanography, 2019, 38(6): 29-40. [17] 赵林, 杨绪南, 方根深, 等. 超强台风”山竹”近地层外围风速剖面演变特性现场实测[J]. 空气动力学学报, 2019, 37(1): 43-54. ZHAO L, YANG X N, FANG G S, et al. Observation-based study for the evolution of vertical wind profiles in the boundary layer during super typhoon Mangkhut[J]. Acta Aerodynamica Sinica, 2019, 37(1): 43-54. [18] 陈淑琴, 李英, 范悦敏, 等. 台风“山竹”(2018)远距离暴雨的成因分析[J]. 大气科学, 2021, 45(3): 573-587. CHEN S Q, LI Y, FAN Y M, et al. Analysis of long-distance heavy rainfall caused by typhoon Mangosteen (2018)[J]. Chinese Journal of Atmospheric Sciences, 2021, 45(3): 573-587. [19] 张丽峰, 郭晓, 张璇, 等. 强震中波红外异常特征研究[J]. 地震工程学报, 2016, 38(6): 977-984. ZHANG L F, GUO X, ZHANG X, et al. Anomaly characteristics of medium-wave infrared data prior to strong earthquakes[J]. China Earthquake Engineering Journal, 2016, 38(6): 977-984. [20] 杨晓霞, 唐丹玲. 台风引起南海海表面降温的位置变化特征[J]. 热带海洋学报, 2010, 29(4): 26-31. YANG X X, TANG D L. Location of sea surface temperature cooling induced by typhoon in the South China Sea[J]. Journal of Tropical Oceanography, 2010, 29(4): 26-31. [21] CAO Y F, LIANG S L, CHEN X N, et al. Enhanced wintertime greenhouse effect reinforcing Arctic amplification and initial seaice melting[J]. Scientific Reports, 2017, 7: 8462. [22] BOISVERT L N, STROEVE J C. The arctic is becoming warmer and wetter as revealed by the atmospheric infrared sounder[J]. Geophysical Research Letters, 2015, 42(11): 4439-4446. [23] EMANUEL K. Increasing destructiveness of tropical cyclones over the past 30 years[J]. Nature, 2005, 436(7051): 686-688. [24] HENDERSON-SELLERS A, ZHANG H, BERZ G, et al. Tropical cyclones and global climate change: a post-IPCC assessment[J]. Bulletin of the American Meteorological Society, 1998, 79(1): 19- 38. [25] YING Y, ZHANG Q H. A modeling study on tropical cyclone structural changes in response to ambient moisture variations[J]. Journal of the Meteorological Society of Japan. Ser. II, 2012, 90(5): 755-770. [26] 张庆红, 韦青, 陈联寿. 登陆中国大陆台风影响力研究[J]. 中国科学: 地球科学, 2010, 40(7): 941-946. ZHANG Q H, WEI Q, CHEN L S. Impact of Landfalling tropical cyclones in mainland China[J]. Science China Earth Sciences, 2010, 53(10): 1559-1564. [27] 陈云浩, 吴佳桐, 王丹丹. 广义地表热辐射方向性计算机模拟研究进展[J]. 地球科学进展, 2018, 33(6): 555-567. CHEN Y H, WU J T, WANG D D. Review of the study on generalized computer simulation of land surface thermal anisotropy[J]. Advances in Earth Science, 2018, 33(6): 555-567. [28] 端义宏, 陈联寿, 梁建茵, 等. 台风登陆前后异常变化的研究进展[J]. 气象学报, 2014, 72(5): 969-986. DUAN Y H, CHEN L S, LIANG J Y, et al. Research progress in the unusual variations of typhoons before and after landfalling[J]. Acta Meteorologica Sinica, 2014, 72(5): 969-986. [29] 蒋建莹, 廖蜜. 风云气象卫星监测图像展示台风“山竹”的演变过程[J]. 卫星应用, 2019(1): 46-49. JIANG J Y, LIAO M. Fengyun meteorological satellite monitoring image shows the evolution process of Typhoon Mangkhut[J]. Satellite Application, 2019(1): 46-49. [30] 王琳艳, 郁诚成, 吴克俭. 南海SST对台风过程响应分析[J]. 海洋湖沼通报, 2017(6): 67-74. WANG L Y, YU C C, WU K J. Response of sea surface temperature to typhoon in south China Sea[J]. Transactions of Oceanology and Limnology, 2017(6): 67-74. |
服务与反馈:
|
【文章下载】【发表评论】【查看评论】【加入收藏】
|
|
|