摘要:
|
基于第三代近岸海浪模型(Simulating Waves Nearshore,SWAN)和敏感性分析提出了适用于浙江沿海台风浪模拟的参数方案。选取近10 a影响浙江海域的37个台风进行数值模拟和误差分析,验证该参数方案下模型对不同强度和路径台风的适应性。结果表明,优选参数方案对各类型台风浪的模拟效果良好,平均相对误差小于31%,对强台风型台风浪的模拟效果明显优于超强台风和台风,平均相对误差小于25%;对西北向型台风浪的模拟效果最好,平均相对误差小于30%。 |
In this paper, a parameter scheme suitable suitable for typhoon wave simulation along Zhejiang coastal area is proposed based on the third-generation Simulating Wave Nearshore (SWAN) model and sensitivity analysis. The numerical simulation results and error analysis of 37 typhoons affecting the Zhejiang Province in the past 10 years are selected to verify the adaptability of the model to typhoons of different intensities and paths under this parameter scheme. The results show that the parameter scheme proposed in this paper is suitable for simulating various types of typhoon waves with the average relative error less than 31%. The simulation effect of strong typhoon waves is significantly better than that of super typhoons and typhoons with the average relative error less than 25%. The simulation effect of northwest-oriented typhoon waves is the best with the average relative error less than 30%. |
参考文献:
|
[1] 县彦宗, 吴玮, 胡建华, 等. 浙江省海洋灾害与防御对策[J]. 海洋开发与管理, 2014, 31(10): 106-109. XIAN Y Z, WU W, HU J H, et al. Marine disasters and defense countermeasures in Zhejiang Province[J]. Ocean Development and Management, 2014, 31(10): 106-109. [2] 莫冬雪. 中国近海寒潮影响下的灾害性海洋动力环境研究[D]. 青岛: 中国科学院大学(中国科学院海洋研究所), 2018. MO D X. Study on disastrous ocean dynamical environment under the influence of cold waves in the northern East China Sea[D]. Qingdao: University of Chinese Academy of Sciences (The Institute of Oceanology, Chinese Academy of Sciences), 2018. [3] AMAROUCHE K, AKPINAR A, BACHARI N E I, et al. Evaluation of a high-resolution wave hindcast model SWAN for the west Mediterranean basin[J]. Applied Ocean Research, 2019, 84: 225- 241. [4] 尹超, 黄海军, 王道儒, 等. 海南岛近岸养殖区台风浪预报技术研究[J]. 海洋科学, 2020, 44(1): 1-7. YIN C, HUANG H J, WANG D R, et al. Storm wave forecasting technique for the nearshore aquaculture area of Hainan Island[J]. Marine Sciences, 2020, 44(1): 1-7. [5] HOQUE M A, PERRIE W, SOLOMON S M. Application of SWAN model for storm generated wave simulation in the Canadian Beaufort Sea[J]. Journal of Ocean Engineering and Science, 2020, 5(1): 19-34. [6] 黄世昌, 赵鑫, 娄海峰, 等. 浙江沿海超强台风作用下的台风浪波高[J]. 海洋通报, 2012, 31(4): 369-375. HUANG S C, ZHAO X, LOU H F, et al. Typhoon-generated wave height due to the super typhoon in the coastal region of Zhejiang Province[J]. Marine Science Bulletin, 2012, 31(4): 369-375. [7] 余墅幸. 浙江省沿海风暴潮位对台风浪的影响研究[D]. 杭州: 浙江大学, 2012. YU S X. Research on the influence of storm tide on typhoon waves in the coast of Zhejiang Province[D]. Hangzhou: Zhejiang University, 2012. [8] 杜艳, 刘国强, 何宜军, 等. 台风“灿鸿”影响下海浪的数值模拟研究[J]. 海洋科学, 2020, 44(10): 12-22. DU Y, LIU G Q, HE Y J, et al. Numerical simulation of typhoon waves under the influence of typhoon“Chan-Hom”[J]. Marine Sciences, 2020, 44(10): 12-22. [9] 郭敬, 李尚鲁, 李婷, 等. 南麂岛重现期波高空间分布特征分析[J]. 海洋预报, 2020, 37(5): 86-94. GUO J, LI S L, LI T, et al. Characteristics of wave height spatial distribution with different return periods in Nanji Island[J]. Marine Forecasts, 2020, 37(5): 86-94. [10] DU M, HOU Y J, QI P, et al. The impact of different historical typhoon tracks on storm surge: a case study of Zhejiang, China[J]. Journal of Marine Systems, 2020, 206: 103318. [11] 冯兴如, 杨德周, 尹宝树, 等. 中国浙江和福建海域台风浪变化特征和趋势[J]. 海洋与湖沼, 2018, 49(2): 233-241. FENG X R, YANG D Z, YIN B S, et al. The change and trend of the typhoon waves in Zhejiang and Fujian coastal areas of China [J]. Oceanologia et Limnologia Sinica, 2018, 49(2): 233-241. [12] 蒋廷松. 浙江省海域的波浪数值模拟与波浪能资源分析[D]. 杭州: 浙江工业大学, 2013. JIANG T S. Numerical simulation and analysis of wave energy resource at nearshore area of Zhejiang Province[D]. Hangzhou: Zhejiang University of Technology, 2013. [13] 应王敏, 郑桥, 朱陈陈, 等. 基于SWAN模式的“灿鸿”台风浪数值模拟[J]. 海洋科学, 2017, 41(4): 108-117. YING W M, ZHENG Q, ZHU C C, et al. Numerical simulation of "CHAN-HOM" typhoon waves using SWAN model[J]. Marine Sciences, 2017, 41(4): 108-117. [14] 郑桥. 浙江近海典型台风浪和寒潮浪的精细化数值模拟[D]. 杭州: 浙江大学, 2019. ZHENG Q. Numerical simulation of typical typhoon waves and cold waves in Zhejiang adjacent seas with refined grids[D]. Hangzhou: Zhejiang University, 2019. [15] HUANG Y, WEISBERG R H, ZHENG L Y, et al. Gulf of Mexico hurricane wave simulations using SWAN: bulk formula-based drag coefficient sensitivity for Hurricane Ike[J]. Journal of Geophysical Research: Oceans, 2013, 118(8): 3916-3938. [16] XU Y, ZHANG J C, XU Y, et al. Analysis of the spatial and temporal sensitivities of key parameters in the SWAN model: an example using Chan-hom typhoon waves[J]. Estuarine, Coastal and Shelf Science, 2020, 232: 106489. [17] WU W F, LIU Z Z, ZHAI F G, et al. A quantitative method to calibrate the SWAN wave model based on the whitecapping dissipation term[J]. Applied Ocean Research, 2021, 114: 102785. [18] RIS R C, HOLTHUIJSEN L H, BOOIJ N. A spectral model for waves in the near shore zone[C]//24th International Conference on Coastal Engineering. Kobe: ASCE, 1994: 68-78. [19] WU W F, LI P L, ZHAI F G, et al. Evaluation of different wind resources in simulating wave height for the Bohai, Yellow, and East China Seas (BYES) with SWAN model[J]. Continental Shelf Research, 2020, 207: 104217. [20] SWAN Team. Scientific and technical documentation, SWAN Cycle III version 41.01[R]. Delft: Delft University of Technology, 2014. [21] 宋超辉, 王楠, 王阔, 等. 基于1988-2017年CCMP数据的浙江沿海海表风速变化及成因[J]. 大气科学学报, 2019, 42(4): 562- 570. SONG C H, WANG N, WANG K, et al. Variation and cause of sea surface wind speed in Zhejiang coastal area based on CCMP data from 1988 to 2017[J]. Transactions of Atmospheric Sciences, 2019, 42(4): 562-570. [22] KAMINSKY G M, KRAUS N C. Evaluation of depth-limited wave breaking criteria[C]//Proceedings of 2nd International Symposium on Ocean Wave Measurement and Analysis. New York: ASCE, 1993: 180-193. [23] 王远超. 0214号热带气旋强度突变的研究[J]. 海洋预报, 2006, 23(1): 44-47. WANG Y C. Study on the rapid change of typhoon 0214(vongfong) intensity[J]. Marine Forecasts, 2006, 23(1): 44-47. [24] 董加斌, 黄新晴. 登陆浙江的台风路径分类和暴雨落区分析[J]. 浙江气象, 2019, 40(3): 13-19. DONG J B, HUANG X Q. Classification of typhoon track and analysis of rainstorm area landing in Zhejiang[J]. Journal of Zhejiang Meteorology, 2019, 40(3): 13-19. |
服务与反馈:
|
【文章下载】【发表评论】【查看评论】【加入收藏】
|
|
|