中国第一代再分析产品CRA对琼州海峡海雾模拟的影响研究 |
作者:杨薇1 2 冯箫1 2 冯文1 2 李勋1 2 张涛3 |
单位:1. 海南省气象台, 海南 海口 570203; 2. 海南省南海气象防灾减灾重点实验室, 海南 海口 570203; 3. 国家气象信息中心, 北京 100081 |
关键词:中国第一代全球再分析产品 海雾 琼州海峡 数值模拟 |
分类号:P732.1 |
|
出版年·卷·期(页码):2023·40·第二期(98-109) |
摘要:
|
为研究中国气象局(China Meteorological Administration,CMA)研发的中国第一代全球再分析产品CRA(CMA Global Reanalysis)对海雾模拟的适用性,将CRA与欧洲中心再分析产品ERA5(the 5th Generation of ECMWF Reanalysis)以及美国国家环境预报中心的再分析产品FNL(Final Reanalysis Data)分别作为WRF(Weather Research and Forecast)模式驱动的初边界条件,对发生在琼州海峡的一次持续性海雾过程进行数值模拟。结果表明:将3种再分析产品作为初始场均能模拟出琼州海峡海雾发展过程。CRA和ERA5模拟的海雾在偏东风下开始发展,风向转为东北风后消散。CRA模拟的海雾强度最强且维持时间最长,FNL模拟的底层风场较早转为东北风,海雾消散早。在垂直方向上,ERA5和CRA模拟的海雾发展高度与实况接近,FNL则明显偏低。CRA中较低的逆温层以及近地层温度将水汽聚集在低层,使得海雾可以持续发展并长时间维持。在加入实时更新的高分辨率海温后,模拟的气海温差场更精细,可反映出琼州海峡中部及东部气海温差小于0.5℃的区域,模拟海雾发展的能力更强。 |
To investigate the application of China Meteorological Administration Global Reanalysis (CRA) product on sea fog simulation, the 5th Generation of European Centre for Medium-Range Weather Forecasts Reanalysis (ERA5) and the Final Reanalysis Data (FNL) of the National Centers for Environmental Prediction are used in this study. The Weather Research and Forecasting Model (WRF) is driven by these products as the initial boundary conditions, and a persistent sea fog process in the Qiongzhou Strait is simulated. The results show that all the three reanalysis products can simulate the process of sea fog over the Qiongzhou Strait. In the CRA and ERA5 simulation, sea fog develops under the easterly wind and dissipates when the wind direction turns to northeast. The CRA simulates a strongest and longest sea fog for this process. In the FNL simulation, the wind direction changes to northeast earlier and result in earlier dissipation of the sea fog. In the vertical direction, the height of sea fog simulated by the ERA5 and CRA is close to observation data, while that simulated by the FNL is quite low. In the CRA simulation, the water vapor is aggregated in the low layer due to the low temperature of the inversion layer and the near ground layer, making the sea fog develops continuously and maintains in a long time. After adding the real-time updated high-resolution sea surface temperature data, a more refined air-sea temperature difference field is obtained, which can reflect the difference area less than 0.5 ℃ over the Qiongzhou Strait, and simulate a stronger sea fog. |
参考文献:
|
[1] 王彬华. 海雾[M]. 北京: 海洋出版社, 1983. WANG B H. Sea fog[M]. Beijing: China Ocean Press, 1983. [2] GULTEPE I, TARDIF R, MICHAELIDES S C, et al. Fog research: a review of past achievements and future perspectives[J]. Pure and Applied Geophysics, 2007, 164(6-7): 1121-1159. [3] BERGOT T, GUEDALIA D. Numerical forecasting of radiation fog. Part I: numerical model and sensitivity tests[J]. Monthly Weather Review, 1994, 122(6): 1218-1230. [4] PAGOWSKI M, GULTEPE I, KING P. Analysis and modeling of an extremely dense fog event in southern Ontario[J]. Journal of Applied Meteorology, 2004, 43(1): 3-16. [5] 高山红, 齐伊玲, 张守宝, 等. 利用循环3DVAR改进黄海海雾数值模拟初始场I: WRF数值试验[J]. 中国海洋大学学报, 2010, 40(10): 1-9. GAO S H, QI Y L, ZHANG S B, et al. Initial conditions improvement of sea fog numerical modeling over the Yellow Sea by using cycling 3DVAR Part I: WRF numerical experiments[J]. Periodical of Ocean University of China, 2010, 40(10): 1-9. [6] WANG Y M, GAO S H, FU G, et al. Assimilating MTSAT-derived humidity in nowcasting sea fog over the Yellow Sea[J]. Weather and Forecasting, 2014, 29(2): 205-225. [7] 史得道, 吴振玲, 高山红, 等. 海雾预报研究综述[J]. 气象科技进展, 2016, 6(2): 49-55. SHI D D, WU Z L, GAO S H, et al. A summary of research on sea fog forecasting[J]. Advances in Meteorological Science and Technology, 2016, 6(2): 49-55. [8] LI P Y, FU G, LU C G, et al. The formation mechanism of a spring sea fog event over the Yellow Sea associated with a low-level jet [J]. Weather and Forecasting, 2012, 27(6): 1538-1553. [9] HARIPRASAD K B R R, SRINIVAS C V, SINGH A B, et al. Numerical simulation and intercomparison of boundary layer structure with different PBL schemes in WRF using experimental observations at a tropical site[J]. Atmospheric Research, 2014, 145- 146: 27-44. [10] 陆雪, 高山红, 饶莉娟, 等. 春季黄海海雾WRF参数化方案敏感性研究[J]. 应用气象学报, 2014, 25(3): 312-320. LU X, GAO S H, RAO L J, et al. Sensitivity study of WRF parameterization schemes for the spring sea fog in the Yellow Sea [J]. Journal of Applied Meteorological Science, 2014, 25(3): 312- 320. [11] 黄翊, 彭新东. 边界层湍流参数化改进对雾的模拟影响[J]. 大气科学, 2017, 41(3): 533-543. HUANG Y, PENG X D. The impact of an improved planetary boundary layer parameterization scheme on the simulation of fog [J]. Chinese Journal of Atmospheric Sciences, 2017, 41(3): 533- 543. [12] 王帅, 傅聃, 陈德林, 等. 2009年春季一次黄海海雾的观测分析及数值模拟[J]. 大气科学学报, 2012, 35(3): 282-294. WANG S, FU D, CHEN D L, et al. An observation and numerical simulation of a sea fog event over the Yellow Sea in the spring of 2009[J]. Transactions of Atmospheric Sciences, 2012, 35(3): 282- 294. [13] ZHANG F, SNYDER C, ROTUNNO R. Mesoscale predictability of the "surprise" snowstorm of 24-25 January 2000[J]. Monthly Weather Review, 2002, 130(6): 1617-1632. [14] ZHANG F Q, ODINS A M, NIELSEN-GAMMON J W. Mesoscale predictability of an extreme warm-season precipitation event [J]. Weather and Forecasting, 2006, 21(2): 149-166. [15] 戴泽军, 宇如聪, 李建, 等. 三套再分析资料的中国夏季降水日变化特征[J]. 气象, 2011, 37(1): 21-30. DAI Z J, YU R C, LI J, et al. The characteristics of summer precipitation diurnal variations in three reanalysis datasets over China[J]. Meteorological Monthly, 2011, 37(1): 21-30. [16] GHARAYLOU M, FARAHANI M M, MAHMOUDIAN A, et al. Prediction of lightning activity using WRF-ELEC model: impact of initial and boundary conditions[J]. Journal of Atmospheric and Solar-Terrestrial Physics, 2020, 210: 105438. [17] KHADKE L, PATTNAIK S. Impact of initial conditions and cloud parameterization on the heavy rainfall event of Kerala (2018)[J]. Modeling Earth Systems and Environment, 2021, 7(4): 2809-2822. [18] 杨薇, 张春花, 冯箫, 等. 琼州海峡两次高压后部型海雾的对比分析和数值模拟[J]. 高原气象, 2022, 41(3): 762-774. YANG W, ZHANG C H, FENG X, et al. Comparison and numeric simulation of two sea fog processes behind High Pattern over Qiongzhou strait[J]. Plateau Meteorology, 2022, 41(3): 762- 774. [19] WILSON T H, FOVELL R G. Modeling the evolution and life cycle of radiative cold pools and fog[J]. Weather and Forecasting, 2018, 33(1): 203-220. [20] 卢绪兰, 彭新东. 尺度自适应大气边界层参数化改进及其对一次海雾的数值模拟研究[J]. 气象学报, 2021, 79(1): 119-131. LU X L, PENG X D. Scale-aware parameterization of atmospheric planetary boundary layer and its application to sea fog simulation[J]. Acta Meteorologica Sinica, 2021, 79(1): 119- 131. [21] GAO S H, LIN H, SHEN B, et al. A heavy sea fog event over the Yellow Sea in March 2005: analysis and numerical modeling[J]. Advances in Atmospheric Sciences, 2007, 24(1): 65-81. [22] 黄辉军, 詹国伟, 刘春霞, 等. 一次华南沿海海雾个例的数值模拟研究[J]. 热带气象学报, 2015, 31(5): 643-654. HUANG H J, ZHAN G W, LIU C X, et al. A case study of numerical simulation of sea fog on the southern china coast[J]. Journal of Tropical Meteorology, 2015, 31(5): 643-654. [23] 史得道, 吴振玲, 罗凯, 等. 2015-04-28渤海海雾形成过程中的海气相互作用分析[J]. 热带气象学报, 2018, 34(3): 324-331. SHI D D, WU Z L, LUO K, et al. Analysis of air-sea interaction on the formation of April 28, 2015 sea fog over Bohai sea[J]. Journal of Tropical Meteorology, 2018, 34(3): 324-331. [24] 张苏平, 任兆鹏. 下垫面热力作用对黄海春季海雾的影响—观测与数值试验[J]. 气象学报, 2010, 68(4): 439-449. ZHANG S P, REN Z P. The influence of the thermal effect of underlaying surface on the spring sea fog over the Yellow Sea: observations and numerical simulations[J]. Acta Meteorologica Sinica, 2010, 68(4): 439-449. [25] 史得道, 黄彬, 吴振玲. 2016年春季一次黄渤海明显海雾过程的大气海洋特征分析[J]. 海洋预报, 2018, 35(5): 85-92. SHI D D, HUANG B, WU Z L. Analysis of atmosphere and sea characteristics under an obvious sea fog process over the Bohai and Yellow Sea in spring 2016[J]. Marine Forecasts, 2018, 35(5): 85-92. [26] 孟宪贵, 张苏平. 夏季黄海表面冷水对大气边界层及海雾的影响[J]. 中国海洋大学学报, 2012, 42(6): 16-23. MENG X G, ZHANG S P. The effect of cold SST on summer atmosphere boundary layer and sea fog over the Yellow Sea[J]. Periodical of Ocean University of China, 2012, 42(6): 16-23. [27] HUANG H J, ZHAN G W, LIU C X, et al. A case study of numerical simulation of sea fog on the southern china coast[J]. Journal of Tropical Meteorology, 2016, 22(4): 497-507. [28] ZHAO D, ZHANG L X, ZHOU T J, et al. Contributions of local and remote atmospheric moisture fluxes to East China precipitation estimated from CRA-40 reanalysis[J]. Journal of Meteorological Research, 2021, 35(1): 32-45. [29] NAKANISHI M, NIINO H. Development of an improved turbulence closure model for the atmospheric boundary layer[J]. JournaloftheMeteorologicalSocietyofJapan,2009,87(5):895-912. [30] LIN Y L, FARLEY R D, ORVILLE H D. Bulk parameterization of the snow field in a cloud model[J]. Journal of Climate and Applied Meteorology, 1983, 22(6): 1065-1092. [31] KAIN J S. The Kain-Fritsch convective parameterization: an update[J]. Journal of Applied Meteorology, 2004, 43(1): 170-181. [32] EK M B, MITCHELL K E, LIN Y, et al. Implementation of Noah land surface model advances in the National Centers for Environmental Prediction operational mesoscale Eta model[J]. Journal of Geophysical Research: Atmospheres, 2003, 108(D22): 8851. [33] IACONO M J, DELAMERE J S, MLAWER E J, et al. Radiative forcing by long-lived greenhouse gases: calculations with the AER radiative transfer models[J]. Journal of Geophysical Research: Atmospheres, 2008, 113(D13): D13103. [34] DUDHIA J. Numerical study of convection observed during the winter monsoon experiment using a mesoscale two-dimensional model[J]. Journal of the Atmospheric Sciences, 1989, 46(20): 3077-3107. [35] 科顿, 安泽斯. 风暴和云动力学[M]. 叶家东, 译. 北京: 气象出版社, 1993: 331-342. COTTON W R, ANTHES R A. Storm and cloud dynamic[M]. YE J D, trans. Beijing: China Meterological Press, 1993: 331-342. [36] 岳岩裕, 牛生杰, 赵丽娟, 等. 湛江地区近海岸雾产生的天气条件及宏微观特征分析[J]. 大气科学, 2013, 37(3): 609-622. YUE Y Y, NIU S J, ZHAO L J, et al. Study on the synoptic system and macro-micro characteristics of sea fog along the Zhanjiang coastal area[J]. Chinese Journal of Atmospheric Sciences, 2013, 37(3): 609-622. [37] 冯箫, 李勋, 杨薇, 等. 2018年 2月琼州海峡一次持续性海雾过程特征分析[J]. 干旱气象, 2021, 39(5): 785-795. FENG X, LI X, YANG W, et al. Characteristics of a persistent sea fog process over the Qiongzhou strait in February 2018[J]. Journal of Arid Meteorology, 2021, 39(5): 785-795. |
服务与反馈:
|
【文章下载】【发表评论】【查看评论】【加入收藏】
|
|
|