基于FUNWAVE-GPU模型的近岸海浪传播变形的数值模拟研究 |
作者:林华东1 李本霞1 2 3 |
单位:1. 国家海洋环境预报中心, 北京 100081; 2. 河海大学 海洋学院, 江苏 南京 210098; 3. 国家海洋环境预报中心 自然资源部海洋灾害预报技术重点实验室, 北京 100081 |
关键词:Boussinesq方程 FUNWAVE-GPU 近岸海浪 非线性变化 GPU技术 |
分类号:P731.22 |
|
出版年·卷·期(页码):2023·40·第三期(1-10) |
摘要:
|
采用FUNWAVE-GPU模型对典型潜堤和缓坡地形上海浪的非线性传播变形进行了数值模拟。与实测数据的对比结果表明,该模型可以较好地模拟近岸复杂地形上海浪的反射、折射和绕射等现象,空间步长对数值模拟效果具有较大影响,GPU并行加速技术有效提高了模型的计算效率。 |
In this paper, the FUNWAVE-GPU model is used to simulate the nonlinear propagation deformation of coastal waves on typical submerged bars and mild slope. The comparison with the measured data shows that the model can correctly simulate the reflection, refraction and diffraction of waves on the nearshore complex terrain. The spatial step has a great influence on the numerical simulation result. The GPU parallel acceleration technology can improve the computational efficiency of the model effectively. |
参考文献:
|
[1] 冯芒, 沙文钰, 朱首贤. 近岸海浪几种数值计算模型的比较[J]. 海洋预报, 2003, 20(1):52-59. FENG M, SHA W Y, ZHU S X. Study on some numerical methods calculating waves in shore[J]. Marine Forecasts, 2003, 20(1):52-59. [2] 李孟国, 王正林, 蒋德才. 近岸波浪传播变形数学模型的研究与进展[J]. 海洋工程, 2002, 20(4):43-57. LI M G, WANG Z L, JIANG D C. A review on the mathematical models of wave transformation in the nearshore region[J]. The Ocean Engineering, 2002, 20(4):43-57. [3] PEREGRINE D H. Long waves on a beach[J]. Journal of Fluid Mechanics, 1967, 27(4):815-827. [4] NWOGU O. Alternative form of Boussinesq equations for nearshore wave propagation[J]. Journal of Waterway, Port, Coastal, and Ocean Engineering, 1993, 119(6):618-638. [5] WEI G, KIRBY J T, GRILLI S T, et al. A fully nonlinear Boussinesq model for surface waves. Part 1. Highly nonlinear unsteady waves[J]. Journal of Fluid Mechanics, 1995, 294:71-92. [6] CHEN Q, DALRYMPLE R A, KIRBY J T, et al. Boussinesq modeling of a rip current system[J]. Journal of Geophysical Research:Oceans, 1999, 104(C9):20617-20637. [7] MADSEN P A, SØRENSEN O R, SCHÄFFER H A. Surf zone dynamics simulated by a Boussinesq type model. Part I. Model description and cross-shore motion of regular waves[J]. Coastal Engineering, 1997, 32(4):255-287. [8] GOBBI M F, KIRBY J T. A fourth order Boussinesq-type wave model[C]//25th International Conference on Coastal Engineering. Orlando:ASCE, 1996:1116-1129. [9] 邹志利. 高阶Boussinesq水波方程[J]. 中国科学(E辑), 1997, 27(5):460-473. ZOU Z L. High-order Boussinesq equations[J]. Science in China (Series E), 1997, 27(5):460-473. [10] 邹志利. 高阶Boussinesq水波方程的改进[J]. 中国科学(E辑), 1999, 29(1):87-96. ZOU Z L. Improvement of high-order Boussinesq equations[J]. Science in China (Series E), 1999, 29(1):87-96. [11] SHI F Y, KIRBY J T, HARRIS J C, et al. A high-order adaptive time-stepping TVD solver for Boussinesq modeling of breaking waves and coastal inundation[J]. Ocean Modelling, 2012, 43-44:36-51. [12] 张尧, 谢欣, 陶爱峰, 等. Boussinesq相位解析的海岸水动力学数学模型研究进展[J]. 海洋通报, 2018, 37(5):481-493. ZHANG Y, XIE X, TAO A F, et al. Review of Boussinesq phaseresolving coastal hydrodynamic model[J]. Marine Science Bulletin, 2018, 37(5):481-493. [13] KIM B, OH C, YI Y, et al. GPU-accelerated boussinesq model using compute unified device architecture FORTRAN[J]. Journal of Coastal Research, 2018, 85(sp1):1176-1180. [14] 孙家文, 朱桐, 房克照, 等. 基于GPU加速的Boussinesq类波浪传播变形数值模型[J]. 海洋工程, 2020, 38(2):111-119.SUN J W, ZHU T, FANG K Z, et al. A GPU accelerated Boussinesq wave propagation model[J]. The Ocean Engineering, 2020, 38(2):111-119. [15] KIRBY J T, WEI G E, CHEN Q, et al. FUNWAVE 1.0:fully nonlinear Boussinesq wave model[M]//Center for Applied Coastal Research, Department of Civil and Environmental Engineering, University of Delaware. Documentation and User's Manual. Newark:University of Delaware, 1998. [16] SHI F Y, DALRYMPLE R A, KIRBY J T, et al. A fully nonlinear Boussinesq model in generalized curvilinear coordinates[J]. Coastal Engineering, 2001, 42(4):337-358. [17] YUAN Y, SHI F Y, KIRBY J T, et al. FUNWAVE-GPU:multipleGPU acceleration of a boussinesq-type wave model[J]. Journal of Advances in Modeling Earth Systems, 2020, 12(5):e2019MS001957. [18] 杨怀玮, 原野, 高义, 等. 裂流危险性的数值预报方法及其在三亚大东海浴场的应用[J]. 海洋预报, 2022, 39(2):59-69. YANG H W, YUAN Y, GAO Y, et al. A numerical forecasting method of the hazard of rip current and its application in Dadonghai beach, Sanya[J]. Marine Forecasts, 2022, 39(2):59-69. [19] CHEN Q, KIRBY J T, DALRYMPLE R A, et al. Boussinesq modeling of longshore currents[J]. Journal of Geophysical Research:Oceans, 2003, 108(C11):3362. [20] LARSEN J, DANCY H. Open boundaries in short wave simulations-A new approach[J]. Coastal Engineering, 1983, 7(3):285-297. [21] TORO E F. Splitting schemes for PDEs with source terms[M]//TORO E F. Riemann Solvers and Numerical Methods for Fluid Dynamics:A Practical Introduction. 3rd ed. Berlin, Heidelberg:Springer, 2009:531-542. [22] TONELLI M, PETTI M. Hybrid finite volume-finite difference scheme for 2DH improved Boussinesq equations[J]. Coastal Engineering, 2009, 56(5-6):609-620. [23] DINGEMANS M W. Comparison of computations with Boussinesq-like models and laboratory measurements[R]. Deltares (WL), 1994. [24] OHYAMA T, KIOKA W, TADA A. Applicability of numerical models to nonlinear dispersive waves[J]. Coastal Engineering, 1995, 24(3-4):297-313. [25] WILLMOTT C J. On the validation of models[J]. Physical Geography, 1981, 2(2):184-194. [26] BERKHOFF J C W, BOOY N, RADDER A C. Verification of numerical wave propagation models for simple harmonic linear water waves[J]. Coastal Engineering, 1982, 6(3):255-279. |
服务与反馈:
|
【文章下载】【发表评论】【查看评论】【加入收藏】
|
|
|