摘要:
|
利用第五次和第六次国际间耦合模式比较计划(CMIP)中piControl情景下的模拟结果,结合观测资料,对比评估了19个CMIP5模式和23个CMIP6模式对太平洋年代际振荡(PDO)调制厄尔尼诺-南方涛动事件爆发频率不对称的模拟能力,并进一步揭示了PDO的调制过程。结果表明:在观测中,PDO正(负)位相下厄尔尼诺(El Niño)的爆发频率比拉尼娜(La Niña)多300%(少73%),53%(78%)的CMIP5 (6)模式模拟出这一特征;尽管两个模式整体都低(高)估了PDO正(负)位相的调制能力,但CMIP6模式对PDO调制能力的模拟有所改进。进一步研究发现,在PDO正(负)位相下,赤道太平洋中西部会产生较强的西(东)风异常,风场通过平流的作用使得暖水向东流动,从而在太平洋中东部的海表面温度背景场中出现正(负)异常变化,而这有利于PDO正(负)位相下El Niño (La Niña)事件的发生。 |
Based on the observations and the simulation outputs under piControl scenario from the phase 5 and phase 6 of the Coupled Model Intercomparison Projects (CMIP), this study compares and evaluates the simulation ability of 19 CMIP5 models and 23 CMIP6 models on the El Niño-Southern Oscillation frequency asymmetry modulated by Pacific Decadal Oscillation (PDO), and further reveals the modulation process of PDO. The results show that the frequency of El Niño is 300% higher by 300% (lower by 73%) than that of La Niña in the positive (negative) phase of PDO. 53% (78%) of CMIP5 (6) models can simulate this feature. Although CMIP5/6 models underestimate (overestimate) the modulation ability of PDO in the positive (negative) phase, the simulation performance of CMIP6 on the modulation ability of PDO is improved compared with CMIP5 models. Further work shows that in the positive (negative) phase of PDO, a strong west (east) wind anomaly will occur in the central and western equatorial Pacific. Wind drives the warm water flow eastward through horizontal advection, thus a positive (negative) anomaly of sea surface temperature will occur in the central and eastern equatorial Pacific, which promotes the occurrence of El Niño (La Niña) event under the positive (negative) phase of PDO. |
参考文献:
|
[1] BJERKNES J. Atmospheric Teleconnections from the Equatorial Pacific[J]. Monthly Weather Review, 1969, 97(3):163-172. [2] WANG C Z, PICAUT J. Understanding ENSO physics-A review[M]//WANG C, XIE S P, CARTON J A. Earth's Climate:The Ocean-Atmosphere Interaction. Washington:American Geophysical Union, 2004. [3] 任宏利, 郑飞, 罗京佳, 等. 中国热带海-气相互作用与ENSO动力学及预测研究进展[J]. 气象学报, 78(3):351-369. REN H L, ZHENG F, LUO J J, et al. A review of research on tropical air-sea interaction, ENSO dynamics, and ENSO prediction in China[J]. Acta Meteorologica Sinica, 2020, 78(3):351-369. [4] AN S I, WANG B. Interdecadal change of the structure of the ENSO mode and its impact on the ENSO frequency[J]. Journal of Climate, 2000, 13(12):2044-2055. [5] TIMMERMANN A. Decadal ENSO amplitude modulations:a nonlinear paradigm[J]. Global and Planetary Change, 2003, 37(1-2):135-156. [6] YEH S W, JHUN J G, KANG I S, et al. The decadal ENSO variability in a hybrid coupled model[J]. Journal of Climate, 2004, 17(6):1225-1238. [7] MANTUA N J, HARE S R, ZHANG Y, et al. A Pacific interdecadal climate oscillation with impacts on salmon production[J]. Bulletin of the American Meteorological Society, 1997, 78(6):1069-1080. [8] NEWMAN M, ALEXANDER M A, AULT T R, et al. The Pacific decadal oscillation, revisited[J]. Journal of Climate, 2016, 29(12):4399-4427. [9] WANG L, CHEN W, HUANG R H. Interdecadal modulation of PDO on the impact of ENSO on the East Asian winter monsoon[J]. Geophysical Research Letters, 2008, 35(20):L20702. [10] FENG J, WANG L, CHEN W. How does the East Asian summer monsoon behave in the decaying phase of El Nino during different PDO phases[J]. Journal of Climate, 2014, 27(7):2682-2698. [11] LIN R P, ZHENG F, DONG X. ENSO frequency asymmetry and the Pacific Decadal Oscillation in observations and 19 CMIP5 models[J]. Advances in Atmospheric Sciences, 2018, 35(5):495-506. [12] 周天军, 邹立维, 陈晓龙. 第六次国际耦合模式比较计划(CMIP6)评述[J]. 气候变化研究进展, 2019, 15(5):445-456. ZHOU T J, ZOU L W, CHEN X L. Commentary on the coupled model intercomparison project phase 6(CMIP6)[J]. Climate Change Research, 2019, 15(5):445-456. [13] 夏松, 刘鹏, 江志红, 等. CMIP5和CMIP6模式在历史试验下对AMO和PDO的模拟评估[J]. 地球科学进展, 2021, 36(1):58-68. XIA S, LIU P, JIANG Z H, et al. Simulation evaluation of AMO and PDO with CMIP5 and CMIP6 models in historical experiment[J]. Advances in Earth Science, 2021, 36(1):58-68. [14] HUANG B Y, THORNE P W, BANZON V F, et al. Extended reconstructed sea surface temperature, version 5(ERSSTv5):upgrades, validations, and intercomparisons[J]. Journal of Climate, 2017, 30(20):8179-8205. [15] TRENBERTH K E, CARON J M, STEPANIAK P D, et al. Evolution of El Nino-Southern Oscillation and global atmospheric surface temperatures[J]. Journal of Geophysical Research, 2002, 107(D8):4065. [16] CHU P S, WANG J X. Tropical cyclone occurrences in the vicinity of Hawaii:Are the differences between El Nino and nonEl Nino years significant[J]. Journal of Climate, 1997, 10(10):2683-2689. [17] BARNETT T P, PIERCE D W, LATIF M, et al. Interdecadal interactions between the tropics and midlatitudes in the Pacific basin[J]. Geophysical Research Letters, 1999, 26(5):615-618. [18] WANG B, AN S I. A mechanism for decadal changes of ENSO behavior:Roles of background wind changes[J]. Climate Dynamics, 2002, 18(6):475-486. |
服务与反馈:
|
【文章下载】【发表评论】【查看评论】【加入收藏】
|
|
|