边界层参数化方案对台风“烟花”北上阶段模拟影响的差异比较 |
作者:邢蕊1 2 杨健博1 3 庄庭4 王庆元5 邱晓滨1 3 田梦1 3 |
单位:1. 天津市海洋气象重点实验室, 天津 300074; 2. 天津市滨海新区气象局, 天津 300457; 3. 天津市气象科学研究所, 天津 300074; 4. 天津市气象探测中心, 天津 300061; 5. 天津市气象台, 天津 300074 |
关键词:边界层参数化方案 北上台风 数值模拟 环渤海区域 |
分类号:P456.7 |
|
出版年·卷·期(页码):2023·40·第四期(107-121) |
摘要:
|
利用中尺度数值预报模式(WRF)中的8种边界层参数化方案(ACM2、Boulac、GBM、MYJ、MYNN、QNSE、UW、YSU),采用高分辨率数值试验的方法研究不同边界层参数化方案对台风“烟花”(2021)北上影响环渤海区域阶段的路径、强度、降水及动热力结构等方面的模拟差异。结果表明:台风北上后的路径模拟对边界层参数化方案较敏感,其中Boulac方案模拟的路径误差最小,随着积分时间延长,各试验的路径差异也越来越显著;由于台风北上阶段强度较弱,模拟的最低气压绝对误差总体偏小,基本分布在2~6 hPa之间;各试验对累积降水极值大小和位置的模拟存在较大差异,通过分析24 h累积降水的TS评分可知,Boulac方案在中雨以上量级的模拟中表现最优,而ACM2方案则在大雨及暴雨以上量级的模拟中表现最优;各试验对于台风动热力结构的模拟存在差异,其中动力结构的差异更加明显,并且低层大气比高层大气差异更显著。造成这种差异的原因可能是由于各方案对边界层热通量以及动热力结构的模拟存在差异,并通过边界层顶的夹卷过程将这种差异引入高层大气。 |
Eight planetary boundary layer (PBL) parameterization schemes (ACM2, Boulac, GBM, MYJ, MYNN, QNSE, UW and YSU) in the mesoscale numerical model WRFv4.3 are used to simulate the track, intensity, precipitation, dynamical and thermodynamical structures in the boundary layer of Typhoon "In-Fa " (2021) during its northward-movement phase to the coastal regions of the Bohai Sea. The results show that the simulated track of the typhoon is sensitive to the PBL schemes. The simulated track using the Boulac scheme shows the smallest error. The differences between simulated tracks amplify along with the prolong of integral time. The absolute errors (between 2~6 hPa) of the simulated minimum pressure are small because of the weak intensity of the typhoon in the northward-movement period. The maximum value and position of the accumulated rainfall show significant differences in the eight PBL schemes tests. Based on the analysis of the 24 h accumulated rainfall threat scores, the Boulac scheme shows the optimal performance on the simulation of moderate rain and above, while the ACM2 is the best in simulating heavy and torrential rain. The eight PBL schemes show significant differences in the simulation of dynamical and thermodynamical structures, and the discrepancies in the dynamical structures are more obvious. The simulation differences are more significant on the atmosphere at the lower levels compared to the higher levels. The main reason for those differences may be due to the simulation discrepancies in the heat flux, dynamic and thermodynamic structures of the PBL in the eight simulations, which affect the higher atmosphere through the entrainment process at the top of the PBL. |
参考文献:
|
[1] 陈联寿, 孟智勇. 我国热带气旋研究十年进展[J]. 大气科学, 2001, 25(3): 420-432. CHEN L S, MENG Z Y. An overview on tropical cyclone research progress in China during the past ten years[J]. Chinese Journal of Atmospheric Sciences, 2001, 25(3): 420-432. [2] 李英, 陈联寿, 张胜军. 登陆我国热带气旋的统计特征[J]. 热带气象学报, 2004, 20(1): 14-23. LI Y, CHEN L S, ZHANG S J. Statistical characteristics of tropical cyclone making landfalls on China[J]. Journal of Tropical Meteorology, 2004, 20(1): 14-23. [3] 邢蕊, 徐晶, 林瀚. 热带气旋过台湾后再次登陆的路径强度变化统计分析[J]. 气象, 2020, 46(4): 517-527. XING R, XU J, LIN H. Statistical analysis of track and intensity variations of tropical cyclone landing mainland after passing through Taiwan[J]. Meteorological Monthly, 2020, 46(4): 517-527. [4] 蔡芗宁, 寿绍文, 钟青. 边界层参数化方案对暴雨数值模拟的影响[J]. 南京气象学院学报, 2006, 29(3): 364-370. CAI X N, SHOU S W, ZHONG Q. Impact of different boundary layer parameterization schemes on the numerical simulation for a rainstorm[J]. Journal of Nanjing Institute of Meteorology, 2006, 29(3): 364-370. [5] 崔驰潇, 包云轩, 袁成松, 等. 不同边界层参数化方案对江苏地区一次平流雾过程的模拟影响[J]. 大气科学, 2018, 42(6): 1344- 1362. CUI C X, BAO Y X, YUAN C S, et al. Influence of different boundary layer parameterization schemes on the simulation of an advection fog process in Jiangsu[J]. Chinese Journal of Atmospheric Sciences, 2018, 42(6): 1344-1362. [6] 刘伟光, 陈海山, 俞淼. 积云对流参数化方案对东亚夏季环流和降水模拟的影响[J]. 大气科学, 2019, 43(1): 64-74. LIU W G, CHEN H S, YU M. Impacts of cumulus convective parameterization schemes on simulation of East Asian summer circulation and rainfall[J]. Chinese Journal of Atmospheric Sciences, 2019, 43(1): 64-74. [7] 庞琦烨, 平凡, 沈新勇, 等. 不同微物理方案对台风“彩虹”(2015)降水影响的比较研究[J]. 大气科学, 2019, 43(1): 202-220. PANG Q Y, PING F, SHEN X Y, et al. A comparative study of effects of different microphysics schemes on precipitation simulation for typhoon Mujigae (2015) [J]. Chinese Journal of Atmospheric Sciences, 2019, 43(1): 202-220. [8] 吴立广, 刘青元, 周星阳. 热带气旋边界层精细结构研究综述[J]. 气象科学, 2020, 40(1): 1-10. WU L G, LIU Q Y, ZHOU X Y. A review on fine-scale structures in tropical cyclone boundary layer[J]. Journal of the Meteorological Sciences, 2020, 40(1): 1-10. [9] BRAUN S A, TAO W K. Sensitivity of high-resolution simulations of hurricane Bob (1991) to planetary boundary layer parameterizations[J]. Monthly Weather Review, 2000, 128(12): 394l-3961. [10] 邓国, 周玉淑, 李建通. 台风数值模拟中边界层方案的敏感性试验I. 对台风结构的影响[J]. 大气科学, 2005, 29(3): 417-428. DENG G, ZHOU Y S, LI J T. The experiments of the boundary layer schemes on simulated typhoon Part I. the effect on the structure of typhoon[J]. Chinese Journal of Atmospheric Sciences, 2005, 29(3): 417-428. [11] 张福青, 杜华武, 蒋全荣. 成熟台风边界层作用的数值研究[J]. 热带气象学报, 1994, 10(2): 107-114. ZHANG F Q, DU H W, JIANG Q R. A numerical study of the boundary layer effect on mature typhoon[J]. Journal of Tropical Meteorology, 1994, 10(2): 107-114. [12] 周昊, 朱伟军, 彭世球. 不同微物理方案和边界层方案对超强台风“鲇鱼”路径和强度模拟的影响分析[J]. 热带气象学报, 2013, 29(5): 803-812. ZHOU H, ZHU W J, PENG S Q. The impacts of different microphysics schemes and boundary layer schemes on simulated track and intensity of super typhoon Megi (1013) [J]. Journal of Tropical Meteorology, 2013, 29(5): 803-812. [13] 王雨星, 钟中, 孙源, 等. 两种边界层参数化方案模拟热带气旋Megi (2010)路径差异的机理分析[J]. 地球物理学报, 2017, 60(7): 2545-2555. WANG Y X, ZHONG Z, SUN Y, et al. The mechanism analysis of the track deviation of tropical cyclone Megi (2010) simulated with two planetary boundary layer schemes[J]. Chinese Journal of Geophysics, 2017, 60(7): 2545-2555. [14] 温晓培, 隆霄, 张述文, 等. 边界层参数化方案对台风SANBA初生阶段影响的数值模拟研究[J]. 热带气象学报, 2016, 32(3): 346-357. WEN X P, LONG X, ZHANG S W, et al. Parameterization schemes on typhoon SANBA during its initial phase[J]. Journal of Tropical Meteorology, 2016, 32(3): 346-357. [15] 王叶红, 赵玉春. 边界层参数化方案对“莫兰蒂”台风(1614)登陆阶段影响的数值模拟研究[J]. 大气科学, 2020, 44(5): 935-959. WANG Y H, ZHAO Y C. Numerical investigation of the effects of boundary layer parameterization schemes on typhoon Meranti (1614) landing process[J]. Chinese Journal of Atmospheric Sciences, 2020, 44(5): 935-959. [16] 丁成慧, 李江南, 赵杨洁, 等. 边界层参数化方案对南海秋季台风“莎莉嘉”(2016)模拟的影响[J]. 热带气象学报, 2018, 34(5): 657-673. DING C H, LI J N, ZHAO Y J, et al. The influence of boundary layer parameterization schemes on autumn typhoon Sarika (2016) in south china sea[J]. Journal of Tropical Meteorology, 2018, 34(5): 657-673. [17] 徐亚钦, 翟国庆, 李国平, 等. WRF模式对高影响浙江型台风微物理和边界层参数化方案的优化试验[J]. 热带气象学报, 2017, 33(2): 201-211. XU Y Q, ZHAI G Q, LI G P, et al. Optimization test for microphysical and boundary layer parameterization of highimpact Zhejiang typhoons by WRF model[J]. Journal of Tropical Meteorology, 2017, 33(2): 201-211. [18] 王晨稀. 边界层参数化影响“梅花”台风的敏感性试验[J]. 地球科学进展, 2013, 28(2): 197-208. WANG C X. Experiments of influence of planetary boundary layer parameterization on Muifa typhoon prediction[J]. Advances in Earth Science, 2013, 28(2): 197-208. [19] TANG J, ZHANG J A, ABERSON S D, et al. Multilevel tower observations of vertical eddy diffusivity and mixing length in the tropical cyclone boundary layer during landfalls[J]. Journal of the Atmospheric Sciences, 2018, 75(9): 3159-3168. [20] 唐飞, 陈凤娇, 诸葛小勇, 等. 利用卫星遥感资料分析台风“烟花”(202106)的影响过程[J]. 大气科学学报, 2021, 44(5): 703- 716. TANG F, CHEN F J, ZHUGE X Y, et al. Analysis of influence process of Typhoon In-fa (202106) based on satellite remote sensing data[J]. Transactions of Atmospheric Sciences, 2021, 44(5): 703-716. [21] 邢蕊,邱晓滨,孙瑜,等. 环渤海地区下垫面对北上热带气旋强度变化的影响分析[J]. 热带气象学报, 2023, 39(2): 193-204. Xing R, QIU X B, SUN Y, et al. Analysis of the impact of underlying surface on the northward-traveling tropical cyclone intensity change in the Bohai coastal region[J]. Journal of Tropical Meteorology, 2023, 39(2): 193-204. [22] HONG S Y, NOH Y, DUDHIA J. A new vertical diffusion package with an explicit treatment of entrainment processes[J]. Monthly Weather Review, 2006, 134(9): 2318-2341. [23] HU X M, KLEIN P M, XUE M. Evaluation of the updated YSU planetary boundary layer scheme within WRF for wind resource and air quality assessments[J]. Journal of Geophysical Research: Atmospheres, 2013, 118(18): 10490-10505. [24] PLEIM J E. A combined local and nonlocal closure model for the atmospheric boundary layer. Part I: model description and testing [J]. Journal of Applied Meteorology and Climatology, 2007, 46(9): 1383-1395. [25] PLEIM J E. A combined local and nonlocal closure model for the atmospheric boundary layer. Part II: application and evaluation in a mesoscale meteorological model[J]. Journal of Applied Meteorology and Climatology, 2007, 46(9): 1396-1409. [26] CONIGLIO M C, CORREIA J JR, MARSH P T, et al. Verification of convection-allowing WRF model forecasts of the planetary boundary layer using sounding observations[J]. Weather and Forecasting, 2013, 28(3): 842-862. [27] HUANG M, GAO Z Q, MIAO S G, et al. Sensitivity of urban boundary layer simulation to urban canopy models and PBL schemes in Beijing[J]. Meteorology and Atmospheric Physics, 2019, 131(5): 1235-1248. [28] MELLOR G L, YAMADA T. Development of a turbulence closure model for geophysical fluid problems[J]. Reviews of Geophysics, 1982, 20(4): 851-875. [29] JANJIĆ Z I. Nonsingular implementation of the Mellor-Yamada Level 2.5 scheme in the NCEP MESO model[R]. Office Note No. 437, NCEP, 2001: 61. [30] NAKANISHI M, NIINO H. Development of an improved turbulence closure model for the atmospheric boundary layer[J]. Journal of the Meteorological Society of Japan. Ser. II, 2009, 87(5): 895-912. [31] ROMÁN-CASCÓN C, YAGÜE C, SASTRE M, et al. Observations and WRF simulations of fog events at the Spanish Northern Plateau[J]. Advances in Science and Research, 2012, 8(1): 11-18. [32] BOUGEAULT P, LACARRERE P. Parameterization of orographyinduced turbulence in a mesobeta-scale model[J]. Monthly Weather Review, 1989, 117(8): 1872-1890. [33] SUKORIANSKY S, GALPERIN B, PEROV V. Application of a new spectral theory of stably stratified turbulence to the atmospheric boundary layer over sea ice[J]. Boundary-Layer Meteorology, 2005, 117(2): 231-257. [34] 徐慧燕, 朱业, 刘瑞, 等. 长江下游地区不同边界层参数化方案的试验研究[J]. 大气科学, 2013, 37(1): 149-159. XU H Y, ZHU Y, LIU R, et al. Simulation experiments with different planetary boundary layer schemes in the lower reaches of the Yangtze River[J]. Chinese Journal of Atmospheric Sciences, 2013, 37(1): 149-159. [35] GRENIER H, BRETHERTON C S. A moist PBL parameterization for large-scale models and its application to subtropical cloudtopped marine boundary layers[J]. Monthly Weather Review, 2001, 129(3): 357-377. [36] BRETHERTON C S, PARK S. A new moist turbulence parameterization in the community atmosphere model[J]. Journal of Climate, 2009, 22(12): 3422-3448. [37] LI Q L, LI Z L, PENG Y L, et al. Statistical regression scheme for intensity prediction of tropical cyclones in the Northwestern Pacific[J]. Weather and Forecasting, 2018, 33(5): 1299-1315. [38] LI Q Q, WANG Y Q. A comparison of inner and outer spiral rainbands in a numerically simulated tropical cyclone[J]. Monthly Weather Review, 2012, 140(9): 2782-2805. |
服务与反馈:
|
【文章下载】【发表评论】【查看评论】【加入收藏】
|
|
|