首页期刊介绍通知公告编 委 会投稿须知电子期刊广告合作联系我们在线留言
 
基于最优训练期的风力预报小时级订正释用方法
作者:刘菡  於敏佳 
单位:舟山市气象局, 浙江 舟山 316000
关键词:小时级 风力预报 订正释用 最优训练期 业务应用 
分类号:P732.1
出版年·卷·期(页码):2023·40·第五期(10-22)
摘要:
基于2012—2021年浙江省自动气象站逐日10 min测风资料和2020—2021年浙江省气象局Fruit细网格产品,对比了线性回归、加权误差、平均误差3种最优训练期模型,分析了指标站点最大风速与极大风速关系。结果表明:加权误差法和平均误差法的订正效果明显优于线性回归法,平均误差法的业务应用效果最好,2 h、4 h、10 h分别为11~12 h、13 h、14~72 h预报时效的大概率最优训练期;最大风速与极大风速以一元线性关系为主,且阵性系数与地形、下垫面、天气系统等有关;基于最优训练期的风力预报小时级订正释用方法能有效提高客观风力预报的准确度、精细度,与实际业务中惯用的人工经验方法相比,各站点的修正率为9%~34%,订正释用方法优于人工经验,因此实际业务应用价值更好。
Based on the daily 10-minute wind measurement data of automatic weather stations in Zhejiang Province from 2012 to 2021 and Fruit fine grid product of Zhejiang Meteorological Bureau from 2020 to 2021, three optimal training period models including linear regression, weighted error and average error are designed and compared, and the relationship between maximum and extreme wind speeds at index stations is analyzed. The results show that: The correction effect of the weighted and average error methods is obviously better than that of the linear regression method. The average error method has the best operational application effect. 2 h, 4 h and 10 h are the large probability optimal training periods of 11~12 h, 13 h and 14~72 h forecasts, respectively. The relationship between maximum and extreme wind speeds is mainly linear, and the fitting coefficient is related to terrain, underlying surface, weather system, etc. The hourly correction and interpretation method of wind forecasting based on the optimal training period can effectively improve the accuracy and precision of objective wind forecasting. Compared with the actual business customary manual experience, the correction rate of each station is 9%~34%, which is better than the manual experience. The practical application value is good.
参考文献:
[1] 钱燕珍, 孙军波, 陈佩燕, 等. 用数值预报释用方法做近海及登陆热带气旋强度预报[J]. 气象, 2013, 39(6): 710-718. QIAN Y Z, SUN J B, CHEN P Y, et al. Interpretation method of numerical weather prediction for intensity forecast of offshore and landing tropical cyclones[J]. Meteorological Monthly, 2013, 39(6): 710-718.
[2] 胡海川, 赵伟, 董林. 概率密度匹配方法在我国近海海面10 m风速预报中的应用[J]. 热带气象学报, 2021, 37(1): 91-101. HU H C, ZHAO W, DONG L. Application of probability density function matching in the offshore 10 m wind speed forecasting in China[J]. Journal of Tropical Meteorology, 2021, 37(1): 91-101.
[3] 杨晓君, 张楠, 陈宏, 等. 基于人工神经网络算法的渤海海风预报方法研究[J]. 干旱气象, 2019, 37(1): 146-152. YANG X J, ZHANG N, CHEN H, et al. Study on forecast method of sea wind in Bohai Sea based on artificial neural network algorithm[J]. Journal of Arid Meteorology, 2019, 37(1): 146-152.
[4] 赵文婧, 李照荣, 王小勇, 等. 相似误差订正方法在风电短期风速预报中的应用研究[J]. 热带气象学报, 2021, 37(1): 73-81. ZHAO W J, LI Z R, WANG X Y, et al. Study on application of analog bias correction method to short-term wind speed prediction in wind farms[J]. Journal of Tropical Meteorology, 2021, 37(1): 73- 81.
[5] 杨程, 姜瑜君, 余贞寿, 等. 基于偏最小二乘回归的区域换式风速预报订正技术研究[J]. 气象, 2019, 45(5): 676-684. YANG C, JIANG Y J, YU Z S, et al. Correction technology of regional wind speed forecasting based on partial least square regression[J]. Meteorological Monthly, 2019, 45(5): 676-684.
[6] 刘鸿升, 余功梅. 偏北大风的数值预报释用方法研究[J]. 气象科学, 2002, 22(1): 100-106. LIU H S, YU G M. Study on the forecasting of southward strong wind by the application of numerical model results[J]. Scientia Meteorologica Sinica, 2002, 22(1): 100-106.
[7] 李江萍, 王式功. 统计降尺度法在数值预报产品释用中的应用[J]. 气象, 2008, 34(6): 41-45. LI J P, WANG S G. Application of statistical downscaling method to numerical weather forecast[J]. Meteorological Monthly, 2008, 34(6): 41-45.
[8] GLAHN H R, RUTH D P. The new digital forecast database of the national weather service[J]. Bulletin of the American Meteorological Society, 2003, 84(2): 195-202.
[9] ENGEL C, EBERT E E. Gridded operational consensus fore-casts of 2 m temperature over Australia [J]. Weather and Forecasting, 2012, 27(2): 301-322.
[10] 陈豫英, 陈晓光, 马金仁, 等. 风的精细化MOS预报方法研究[J]. 气象科学, 2006, 26(2): 210-216. CHEN Y Y, CHEN X G, MA J R, et al. A study on subtle MOS forecasting method of wind[J]. Scientia Meteorologica Sinica, 2006, 26(2): 210-216.
[11] 杨程, 姜瑜君, 康丽莉, 等. 浙江沿海风速精细化预报技术的研究及应用[J]. 科技通报, 2021, 37(7): 31-37. YANG C, JIANG Y J, KANG L L, et al. Research and application of precise prediction technology about wind speed along the coast [J]. Bulletin of Science and Technology, 2021, 37(7): 31-37.
[12] 荣艳敏, 阎丽凤, 盛春岩, 等. 山东精细化海区风的MOS预报方法研究[J]. 海洋预报, 2015, 32(3): 59-67. RONG Y M, YAN L F, SHENG C Y, et al. A study on MOS forecasting method of gale wind in Shandong coast[J]. Marine Forecasts, 2015, 32(3): 59-67.
[13] 董美莹, 陈锋, 邱金晶, 等. ECMWF驱动场谱逼近对浙江超强台风“利奇马”(2019)精细化数值预报的影响[J]. 大气科学, 2021,45(5):1071-1086. DONG M Y, CHEN F, QIU J J, et al. Impact of Spectral nudging technique driven with ECMWF data on the fine numerical prediction of super Typhoon Lekima (2019) in Zhejiang province [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 2021, 45(5): 1071-1086.
[14] 於敏佳, 刘菡, 李晓丽. 舟山风力智能网格精细化订正释用技术[J]. 海洋预报, 2021, 38(6): 48-55. YU M J, LIU H, LI X L. Refined intelligent grid correction and interpretation technology for the wind field in Zhoushan area[J]. Marine Forecasts, 2021, 38(6): 48-55.
[15] 宋丽莉, 毛慧琴, 汤海燕, 等. 广东沿海近地层大风特性的观测分析[J]. 热带气象学报, 2004, 20(6): 731-736. SONG L L, MAO H Q, TANG H Y, et al. Observation and analysis of guangdong coastal gales in the near-surface layer[J]. Journal of Tropical Meteorology, 2004, 20(6): 731-736.
[16] 周福, 蒋璐璐, 涂小萍, 等. 浙江省几种灾害性大风近地面阵风系数特征[J]. 应用气象学报,2017, 28(1): 119-128. ZHOU F, JIANG L L, TU X P, et al. Near-surface Gust factor characteristics in several disastrous winds over Zhejiang province [J]. Journal of Applied Meteorological Science, 2017, 28(1): 119- 128.
[17] 陈燕, 张宁. 江苏沿海近地层风阵性及台风对其影响[J]. 应用气象学报, 2019,30(2): 177-190. CHEN Y, ZHANG N. The wind turbulence of the near-surface layer of Jiangsu coastal area and its response to Typhoon[J]. Journal of Applied Meteorological Science, 2019, 30(2): 177-190.
[18] 汪宏宇, 龚强, 杨洪斌. 基于测风塔数据的最大风速与极大风速关系研究[J]. 气象与环境科学, 2019, 42(3): 110-117. WANG H Y, GONG Q, YANG H B. Study on the relationship between maximum and extreme wind speed based on the wind towers data[J]. Meteorological and Environmental Sciences, 2019, 42(3): 110-117.
[19] 陈锦冠, 林少冰. 10分钟平均最大风速与极大风速评估方程的建立[J]. 气象, 2016, 27(10): 38-41. CHEN J G, LIN S B. Relationship between Maximum 10-minute average wind speed and maximum instantaneous wind speed and estimating equation[J]. Meteorological Monthly, 2016, 27(10): 38- 41.
[20] DAVENPORT A G. The spectrum of horizontal gustiness near the ground in high winds[J]. Quarterly Journal of the Royal Meteorological Society, 1961, 87(372): 194-211.
[21] SHIOTANI M, IWATANI Y, KUROHA K. Magnitudes and horizontal correlations of vertical velocities in high winds[J]. Journal of the Meteorological Society of Japan, 1978, 56(1): 35- 42.
[22] 朱智慧, 黄宁立, 秦婷.上海沿海极大风速预报方程的建立和应用[J]. 海洋预报, 2014, 31(1): 58-62. ZHU Z H, HUANG N L, QIN T. Establishment and application of extreme wind speed prediction equation in Shanghai coastal area[J]. Marine Forecasts, 2014, 31(1): 58-62.
[23] 胡波. 浙江沿海台风阵风系数的影响因子分析[J]. 热带气象学报, 2017, 33(6): 841-849. HU B. Analysis of gust factor associated with typhoons on Zhejiang coast[J]. Journal of Tropical Meteorology, 2017, 33(6): 841-849.
[24] 陈雯超, 宋丽莉, 植石群, 等. 不同下垫面的热带气旋强风阵风系数研究[J]. 中国科学: 技术科学, 2011, 41(11): 1449-1459. CHEN W C, SONG L L, ZHI S Q, et al. Analysis on gust factor of tropical cyclone strong wind over different underlying surfaces[J]. Science China Technological Sciences, 2011, 54(10): 2576-2586.
服务与反馈:
文章下载】【发表评论】【查看评论】【加入收藏
 
 海洋预报编辑部 地址:北京海淀大慧寺路8号 电话:010-62105776
投稿网址:http://www.hyyb.org.cn
邮箱:bjb@nmefc.cn
本系统由北京博渊星辰网络科技有限公司设计开发 技术支持电话:010-63361626