江苏海域台风浪波高时空分布特性研究 |
作者:王一心1 潘毅1 周凤妍1 于普兵2 潘锡山3 韩雪3 |
单位:1. 河海大学 港口、海岸与近海工程学院, 江苏 南京 210098; 2. 浙江省水利科学研究院, 浙江 杭州 310020; 3. 江苏省海涂研究中心, 江苏 南京 210036 |
关键词:江苏沿海 台风浪 波高 时空分布 |
分类号:P731.22 |
|
出版年·卷·期(页码):2023·40·第五期(23-34) |
摘要:
|
基于浅水方程和第三代波浪模型构建江苏沿海的风暴潮-波浪耦合模型,基于模型风场和再分析风场构建混合风场模型,根据台风路径将江苏沿海典型台风分为4种类型并进行数值模拟。通过对影响江苏海域不同特征典型台风浪过程的复演,重点研究了不同类型台风引起的台风浪波高的时空分布特征。研究结果表明:从空间上看,“北部掠过型”台风、“沿江苏近岸北移型”台风分别会对江苏北部沿海和南部近海海域产生较大影响,“东侧掠过型”台风对江苏近海海域影响最广;从持续时间上看,“北部掠过型”台风和“东侧掠过型”台风在江苏近海区域引起的大浪持续时间较长,“北部掠过型”台风和“沿江苏近岸北移型”台风分别在江苏沿岸和辐射沙脊区域造成持续的较大波高。 |
Based on the shallow water equation and the third-generation wave model, a coupled storm surgewave model is constructed for the Jiangsu coastal sea. A hybrid wind field model is constructed with parametric model and reanalysis wind fields. Typical typhoons in the Jiangsu coastal sea are classified into four types according to typhoon paths. By simulating the typical typhoon wave processes with different characteristics affecting Jiangsu coastal sea, the spatial and temporal distribution characteristics of typhoon wave heights caused by different types of typical typhoons in Jiangsu coastal sea are studied. The results show that, the "northern passing type" and "northward moving type along the coast of Jiangsu" typhoons have a greater impact on the northern and southern Jiangsu coastal areas, respectively, and the "eastern passing type" typhoons have the widest impact on the Jiangsu offshore areas. The "northern passing type" and "eastern passing type" typhoons cause longer duration of large waves in the Jiangsu offshore areas, in addition, the "northern passing type" and "north moving type along the coast of Jiangsu" typhoons cause continuous large wave heights in the coastal and radiative sand ridge areas of Jiangsu, respectively. |
参考文献:
|
[1] 梁晓红, 彭模, 赵爱博, 等. 江苏海域台风风暴潮灾害特征及影响分析[J]. 江苏科技信息, 2016(17): 37-39. LIANG X H, PENG M, ZHAO A B, et al. Analysis on characteristics and impacts of typhoons storm surge disasters of Jiangsu province[J]. Jiangsu Science & Technology Information, 2016(17): 37-39. [2] HSIAO S C, CHEN H, WU H L, et al. Numerical simulation of large wave heights from super typhoon Nepartak (2016) in the eastern waters of Taiwan[J]. Journal of Marine Science and Engineering, 2020, 8(3): 217. [3] 潘冬冬, 王俊, 周川. 基于“山竹”台风的波浪数值模拟[J]. 水道港口, 2021, 42(2): 194-199. PAN D D, WANG J, ZHOU C. Numerical simulation of wave based on Typhoon Mangkhut[J]. Journal of Waterway and Harbor, 2021, 42(2): 194-199. [4] 宋晓波, 史剑, 李瑞杰, 等. 基于浪流耦合模型的台风浪数值模拟[J]. 海洋湖沼通报, 2015(1): 13-20. SONG X B, SHI J, LI R J, et al. Numerical simulation of typhoon waves in china offshore based on wave-current coupling model[J]. Transactions of Oceanology and Limnology, 2015(1): 13-20. [5] 何倩倩, 杨娟, 王卫远. 台风“达维”影响期间江苏海域台风浪研究[J]. 海洋通报, 2015, 34(5): 592-599. HE Q Q, YANG J, WANG W Y. Study on the simulated typhoon waves off Jiangsu coast during Typhoon DAMREY[J]. Marine Science Bulletin, 2015, 34(5): 592-599. [6] 盛叶新. 基于卫星遥感和数值模拟的台风与台风浪研究[D]. 舟山: 浙江海洋大学, 2019. SHENG Y X. Research on typhoon winds and waves based on satellite remote sensing and numerical simulation[D]. Zhoushan: Zhejiang Ocean University, 2019. [7] 卞建云. 江苏沿海台风风暴潮数值模拟与增水极值分析[D]. 扬州: 扬州大学, 2019. BIAN J Y. Numerical simulation and statistical analysis of typhoon storm surge along Jiangsu Province[D]. Yangzhou: Yangzhou University, 2019. [8] 武海浪, 陈希, 陈徐均, 等. 近岸港口风暴潮与台风浪相互作用的数值模拟[J]. 解放军理工大学学报(自然科学版), 2015, 16(4): 360-367. WU H L, CHEN X, CHEN X J, et al. Numerical simulation of interaction of storm surge and typhoon wave on near shore harbor [J]. Journal of PLA University of Science and Technology (Natural Science Edition), 2015, 16(4): 360-367. [9] 王金城. 江苏沿海可能最大台风风暴潮增水研究[J]. 中国水运, 2018, 18(5): 107-109. WANG J C. Study on the possible maximum typhoon storm surge in Jiangsu coastal area[J]. China Water Transport, 2018, 18(5): 107- 109. [10] 王毅, 涂小萍, 蒋璐璐, 等. 台风“利奇马”影响期间浙江沿海海浪特征分析[J]. 气象科学, 2020, 40(1): 97-105. WANG Y, TU X P, JIANG L L, et al. Analysis of wave characteristics along Zhejiang coast during typhoon“Lekima”[J]. Journal of the Meteorological Sciences, 2020, 40(1): 97-105. [11] 蒋璐璐, 涂小萍, 王毅, 等.“米娜”(1918)台风浪特征及其与“利奇马”(1909)的差异[J]. 海洋预报, 2021, 38(4): 53-60. JIANG L L, TU X P, WANG Y, et al. Characteristics of typhooninduced wave by Mitag(1918) and their differences with that induced by typhoon Lekima(1909)[J]. Marine Forecasts, 2021, 38(4): 53-60. [12] TIAN Z S Y, ZHANG Y. Numerical estimation of the typhooninduced wind and wave fields in Taiwan Strait[J]. Ocean Engineering, 2021, 239: 109803. [13] 唐艳平, 冉晓俊, 李涵钊.“登台入闽”型台风波浪传播特性分析[J]. 水道港口, 2018, 39(6): 665-670. TANG Y P, RAN X J, LI H Z. Analysis of wave propagation characteristics of typhoon“boarding into Fujian Province after landing Taiwan Island”[J]. Journal of Waterway and Harbor, 2018, 39(6): 665-670. [14] WESTERINK J J, LUETTICH JR R A, BLAIN C A, et al. ADCIRC: an advanced three-dimensional circulation model for shelves, coasts, and estuaries. Report 2. User's manual for ADCIRC-2DDI[J]. Journal of Geology, 2006, 76(6): 721-723. [15] BOOIJ N, RIS R C, HOLTHUIJSEN L H. A third-generation wave model for coastal regions: 1. Model description and validation[J]. Journal of Geophysical Research: Oceans, 1999, 104(C4): 7649-7666. [16] YING M, ZHANG W, YU H, et al. An overview of the China Meteorological Administration tropical cyclone database[J]. Journal of Atmospheric and Oceanic Technology, 2014, 31(2): 287-301. [17] LU X Q, YU H, YING M, et al. Western North Pacific tropical cyclone database created by the China Meteorological Administration[J]. Advances in Atmospheric Sciences, 2021, 38(4): 690-699. [18] JELESNIANSKI C P. A numerical calculation of storm tides induced by a tropical storm impinging on a continental shelf[J]. Monthly Weather Review, 1965, 93(6): 343-358. [19] KNAFF J A, SAMPSON C R, DEMARIA M, et al. Statistical tropical cyclone wind radii prediction using climatology and persistence[J]. Weather and Forecasting, 2007, 22(4): 781-791. [20] PAN Y, CHEN Y P, LI J X, et al. Improvement of wind field hindcasts for tropical cyclones[J]. Water Science and Engineering, 2016, 9(1): 58-66. [21] 王宁, 侯一筠, 李水清, 等. 1979-2018年间山东半岛沿海台风浪危险性分布的数值模拟研究[J]. 海洋与湖沼, 2020, 51(4): 861-868. WANG N, HOU Y J, LI S Q, et al. Numerical simulation of the hazard distribution of typhoon waves in 1979-2018[J]. Oceanologia et Limnologia Sinica, 2020, 51(4): 861-868. [22] XIE D M, ZOU Q P, CANNON J W. Application of SWAN + ADCIRC to tide-surge and wave simulation in Gulf of Maine during Patriot's Day storm[J]. Water Science and Engineering, 2016, 9(1): 33-41. |
服务与反馈:
|
【文章下载】【发表评论】【查看评论】【加入收藏】
|
|
|