摘要:
|
研究介绍了一种基于ASCAT散射计风场数据计算热带气旋风速达到34节和50节时风圈半径(R34和R50)大小的方法,根据美国国家海洋和大气管理局提供的最佳路径数据,分析了2013—2022年发生在西北太平洋和北大西洋的热带气旋(TC)。结果表明:ASCAT估算的R34比最佳路径记录大4.5%左右,标准误差、均方根误差和相关系数分别为8.6 km、52.4 km和0.88;R50比最佳路径记录小约4.0%,标准误差、均方根误差和相关系数分别为-15.4 km、39.6 km和0.74,说明本方法能够较好地估计TC风圈半径。两个海盆中TC强度(最大持续风速)与R34的相关性较强(相关系数为0.62~0.66),比R50(与TC强度的相关系数为0.36~0.48)能够更好地表征TC的影响强度和尺度大小,也说明了从ASCAT风场得到的风半径信息对于监测和预报TC强度是有参考价值的。用R34定义TC大小和分类统计,发现两个海盆上平均尺度的峰值出现在9月和10月,中型TC的总数量最多,3种类型TC的变化趋势总体均呈现单峰分布,小型和中型TC的峰值出现在9月,大型TC的峰值滞后1个月。 |
This paper introduces a method for calculating the wind radius(34-knot and 50-knot wind radii, R34 and R50) when the wind speed of a tropical cyclone reaches 34 knots and 50 knots based on the ASCAT scatterometer wind field data. Tropical cyclones(TC) occurred in the Northwest Pacific and North Atlantic from 2013 to 2022 are analyzed using Best Track dataset provided by NOAA, the results show that:The R34 estimated by ASCAT is about 4.5% larger than the Best Track record, and the standard error, root mean square error and correlation coefficient are 8.6 km, 52.4 km and 0.88, respectively; The R50 is about 4.0% smaller than the Best Track record, and the corresponding values are-15.4 km, 39.6 km and 0.74, respectively; The correlation coefficient between TC intensity(maximum sustained wind speed) and R34 in two basins is 0.62~0.66, while that of R50 is 0.36~0.48, suggesting that R34 has a better performance in characterizing TC's influence intensity and scale. It also indicates that the wind radius obtained from ASCAT wind field is valuable in monitoring and predicting TC's intensity. Using R34 to define the size of TC and categorical statistics, we find that the peak value of mean TC size occurs in September and October in both basins, and the total number of medium TC is the largest. The trend of the three types(small, medium, large) of TC shows unimodal distribution, the peak values of small and medium TC occur in September, and that of large TC lag by one month. |
参考文献:
|
[1] POWELL M D, REINHOLD T A. Tropical cyclone destructive potential by integrated kinetic energy[J]. Bulletin of the American Meteorological Society, 2007, 88(4):513-526. [2] VOGELZANG J, STOFFELEN A, VERHOEF A, et al. On the quality of high-resolution scatterometer winds[J]. Journal of Geophysical Research:Oceans, 2011, 116(C10):C10033. [3] STOFFELEN A, KUMAR R, ZOU J H, et al. Ocean surface vector wind observations[M]//BARALE V, GADE M. Remote Sensing of the Asian Seas. Cham:Springer, 2019. [4] 高留喜,朱蓉,常蕊. QuikSCAT和ASCAT卫星反演风场在中国南海北部的适用性研究[J].气象, 2014, 40(10):1240-1247.GAO L X, ZHU R, CHANG R. Applicability research using QuikSCAT and ASCAT satellite inversion wind data in the northern part of South China Sea[J]. Meteorological Monthly,2014, 40(10):1240-1247. [5] RICCIARDULLI L, MANASTER A. Intercalibration of ASCAT scatterometer winds from MetOp-A,-B, and-C, for a stable climate data record[J]. Remote Sensing, 2021, 13(18):3678. [6] POLVERARI F, PORTABELLA M, LIN W M, et al. On high and extreme wind calibration using ASCAT[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60:4202210. [7] WIMMERS A J, VELDEN C S. Advancements in objective multisatellite tropical cyclone center fixing[J]. Journal of Applied Meteorology and Climatology, 2016, 55(1):197-212. [8] LIU S Q, LIN W M, PORTABELLA M, et al. Characterization of tropical cyclone intensity using the HY-2B scatterometer wind data[J]. Remote Sensing, 2022, 14(4):1035. [9] NI W C, STOFFELEN A, REN K J, et al. SAR and ASCAT tropical cyclone wind speed reconciliation[J]. Remote Sensing, 2022, 14(21):5535. [10] 张圣雪,赵朝方.西北太平洋热带气旋强度的多源卫星遥感研究[J].海洋湖沼通报, 2020(1):169-182.ZHANG S X, ZHAO C F. Study of tropical cyclone intensity over the Northwest Pacific Ocean based on multi-satellite remote sensing data[J]. Transactions of Oceanology and Limnology, 2020(1):169-182. [11] NI W C, STOFFELEN A, REN K J, et al. Tropical cyclone intensity estimation from spaceborne microwave scatterometry and parametric wind models[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2022, 15:4719-4729. [12] MAYERS D, RUF C. Estimating the true maximum sustained wind speed of a tropical cyclone from spatially averaged observations[J]. Journal of Applied Meteorology and Climatology,2020, 59(2):251-262. [13] SOISUVARN S, OUDOMYING S. Characterization of the tropical cyclones wind radii in the North Western Pacific Basin using the ASCAT winds data products[C]//Proceedings of 2018Progress in Electromagnetics Research Symposium(PIERSToyama). Toyama:IEEE, 2018:1428-1433. [14] CHAN K T F, CHAN J C L. Size and strength of tropical cyclones as inferred from QuikSCAT data[J]. Monthly Weather Review,2012, 140(3):811-824. [15] MERRILL R T. A comparison of large and small tropical cyclones[J]. Monthly Weather Review, 1984, 112(7):1408-1418. [16] SHEA D J, GRAY W M. The Hurricane's Inner Core Region. I.Symmetric and asymmetric structure[J]. Journal of the Atmospheric Sciences, 1973, 30(8):1544-1564. [17] KIM H J, MOON I J, OH I. Comparison of tropical cyclone wind radius estimates between the KMA, RSMC Tokyo, and JTWC[J].Asia-Pacific Journal of Atmospheric Sciences, 2022, 58(4):563-576. [18] 胡邦辉,谭言科,王举.热带气旋海面最大风速半径的计算[J].应用气象学报, 2004, 15(4):427-435.HU B H, TAN Y K, WANG J. Calculation of maximum wind velocity radius of tropical cyclone on sea surface[J]. Journal of Applied Meteorological Science, 2004, 15(4):427-435. [19] 梁梅,梁沛乐,范伶俐,等. 1980-2016年西北太平洋热带气旋尺度与强度关系[J].广东海洋大学学报, 2022, 42(3):45-52.LIANG M, LIANG P L, FAN L L, et al. Relationship between tropical cyclone scale and intensity over the Northwest Pacific from 1980 to 2016[J]. Journal of Guangdong Ocean University,2022, 42(3):45-52. [20] LIU K S, CHAN J C L. Synoptic flow patterns associated with small and large tropical cyclones over the western North Pacific[J]. Monthly Weather Review, 2002, 130(8):2134-2142. |
服务与反馈:
|
【文章下载】【发表评论】【查看评论】【加入收藏】
|
|
|